Pledge, and Unvell, in OpenBSD

Bob Beck
beck@openbsd.org



Pledge: Realistic subsets of POSIX functionality

Named subsets "dns" "stdio" "wpath" "rpath"
Easy to learn to add to programs

No Subtle Behaviour changes

NoO error returns

lllegal operations crash the program. (SIGABRT)



Pledge Helps Privsep

* Privsep programs start as root, split up into different users and processes for
different functions — often contained with chroot, communicate via pipe.

Consider OpenBSD ntpd — 3 processs

Ntp — pledges “stdio inet”
DNS — pledges “stdio dns”
Master pledges “settime”

Each pledge matches function — makes it safer

A TLS https connection for NTP constraints is made in the internet speaker
without any filesystem access at all (certificates loaded in memory before pledge)



Pledge makes privdrop safer

Privdrop programs start as root and then drop privs to
reduce further risk

Ping is the classic example — starts with setuid root,
opens the raw socket, drops back to the invoking user.

On OpenBSD - it also pledges “stdio inet dns”
Now much safer for the invoking user too!



Pledge brings privdrop to non setuid programs

Programs that do NOT start as root/setuid can not privdrop
Consider a program run by normal users - nc

OpenBSD nc is a swiss army knife of ways to connect to things
Starts with a generous pledge

Reduces according to what operation is being done
- Also ends up at “stdio inet” for the typical case of tcp communication

“A different pledge for each blade”



Chrome

Chrome is already designed for privsep with 5 types of processes
on OpenBSD it is pledged

*GpuProcess - “stdio drm prot_exec recvfd sendfd”
*RenderProcess — “stdio rpath flock prot_exec recvfd sendfd ps”
*ApilnProcess - “stdio prot_exec recvfd sendfd”
*ApiPluginProcess - “stdio prot_exec recvfd sendfd"
*UtilityProcess - "stdio rpath cpath wpath fattr sendfd recvfd"

But chrome is not setuid — can’t contain them with chroot. Pledge takes syscalls
away — but not filesystem access — it could still go after my ssh keys.



Unvelling Unvell

Limit filesystem access

unvell(const char *path, const char *flags);

Access to path that is not unveiled returns ENOENT
Flags —» “rwxc”

Access to an unveiled path dissallowed by flags
returns EACCESS



Unvell

* Unvelling a directory unveils everything underneath it in the
filesystem

* Unveiling a non directory unveils by name in the containing
directory

* Deep support in kernel in name lookup, saving directory
vhodes, associated names

— Keep lookup costs largely in the unveil'ing process.
* New pledge for unveill



Very usable in OpenBSD base
40 odd programs, /sbin utilities, ftp, syslogd,
spamd, bgpctl ...
Many very simple: unvell(*/dev”, “rw”)
Often right before pledge.
Not quite at the holy grall yet...



When will it be available?
* Probably one more refactor of internal
iImplementation.
* Theo’s magic 50 programs rule
* We know Iit's right when we can do chrome.
* Probably for OpenBSD 6.4



Pledge Exec Promises

Supported today, but evolving.

Specify pledge promises for future exec’ed children
Not easy to use today

Really needs to be combined with unvell

More experience with real programs and unvell
should lead us to a better semantic here.



Unvell, Execpromises,Then?

Stargazing down the road we know we really
have it right when we can usefully provide
pledge(1)

pledge [[-p path]...] [-P promises] command [arguments]

* Pledge make build?

* Such things are probably a little ways away. But it's nice to have

goals.



It's all about making big things safer

* Pledge and Unvell are designed to make big programs safer

* Applies to multiple different sorts of programs, privsep, privdrop
unpriviledged

 Easy to use and learn compared to many other techniques

* Designed to make even complex things safer! OpenSSH, httpd,
acme-client, chrome — the stuff we use frequently

>

* Even openssl(1) p&s 03;_ IS pledged on OpenBSD




Questions?
#AMA



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

