

Pledge, and Unveil, in OpenBSD

Bob Beck
beck@openbsd.org

Pledge: Realistic subsets of POSIX functionality

● Named subsets "dns" "stdio" "wpath" "rpath"
● Easy to learn to add to programs
● No Subtle Behaviour changes
● No error returns
● Illegal operations crash the program. (SIGABRT)

Pledge Helps Privsep
● Privsep programs start as root, split up into different users and processes for

different functions – often contained with chroot, communicate via pipe.
● Consider OpenBSD ntpd – 3 processs
● Ntp – pledges “stdio inet”
● DNS – pledges “stdio dns”
● Master pledges “settime”
● Each pledge matches function – makes it safer
● A TLS https connection for NTP constraints is made in the internet speaker

without any filesystem access at all (certificates loaded in memory before pledge)

Pledge makes privdrop safer
● Privdrop programs start as root and then drop privs to

reduce further risk
● Ping is the classic example – starts with setuid root,

opens the raw socket, drops back to the invoking user.
● On OpenBSD – it also pledges “stdio inet dns”
● Now much safer for the invoking user too!

Pledge brings privdrop to non setuid programs

● Programs that do NOT start as root/setuid can not privdrop
● Consider a program run by normal users - nc
● OpenBSD nc is a swiss army knife of ways to connect to things
● Starts with a generous pledge
● Reduces according to what operation is being done

– Also ends up at “stdio inet” for the typical case of tcp communication

● “A different pledge for each blade”

Chrome
Chrome is already designed for privsep with 5 types of processes
on OpenBSD it is pledged

● GpuProcess → “stdio drm prot_exec recvfd sendfd”
● RenderProcess → “stdio rpath flock prot_exec recvfd sendfd ps”
● ApiInProcess → “stdio prot_exec recvfd sendfd”
● ApiPluginProcess → “stdio prot_exec recvfd sendfd"
● UtilityProcess → "stdio rpath cpath wpath fattr sendfd recvfd"

But chrome is not setuid – can’t contain them with chroot. Pledge takes syscalls
away – but not filesystem access – it could still go after my ssh keys.

Unveiling Unveil
● Limit filesystem access
● unveil(const char *path, const char *flags);
● Access to path that is not unveiled returns ENOENT
● Flags→ “rwxc”
● Access to an unveiled path dissallowed by flags

returns EACCESS

Unveil
● Unveiling a directory unveils everything underneath it in the

filesystem
● Unveiling a non directory unveils by name in the containing

directory
● Deep support in kernel in name lookup, saving directory

vnodes, associated names
– Keep lookup costs largely in the unveil’ing process.

● New pledge for unveil

Very usable in OpenBSD base

● 40 odd programs, /sbin utilities, ftp, syslogd,
spamd, bgpctl …

● Many very simple: unveil(“/dev”, “rw”)
● Often right before pledge.
● Not quite at the holy grail yet...

When will it be available?
● Probably one more refactor of internal

implementation.
● Theo’s magic 50 programs rule
● We know it’s right when we can do chrome.
● Probably for OpenBSD 6.4

Pledge Exec Promises
● Supported today, but evolving.
● Specify pledge promises for future exec’ed children
● Not easy to use today
● Really needs to be combined with unveil
● More experience with real programs and unveil

should lead us to a better semantic here.

Unveil, Execpromises,Then?

Stargazing down the road we know we really
have it right when we can usefully provide
pledge(1)
 pledge [[-p path]…] [-P promises] command [arguments]

● Pledge make build?

● Such things are probably a little ways away. But it’s nice to have
goals.

It’s all about making big things safer
● Pledge and Unveil are designed to make big programs safer

● Applies to multiple different sorts of programs, privsep, privdrop
unpriviledged

● Easy to use and learn compared to many other techniques

● Designed to make even complex things safer! OpenSSH, httpd,
acme-client, chrome – the stuff we use frequently

● Even openssl(1) is pledged on OpenBSD

Questions?
#AMA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

