
by Claudio Jeker

OpenBSD
network stack internals
The OpenBSD network stack is under constant development mainly to implement
features that are more and more used in todays core networks. Various changes
were made over the last few years to allow features like flow tagging, route labels,
multipath routing and multiple routing tables. New features like VRF (virtual rout-
ing and forwarding), MPLS and L2TP are worked on or planned. This paper tries to
cover the design decisions and implementation of these features.

OpenBSD – network stack internals Claudio Jeker
Introduction

The OpenBSD network stack is based on the original
BSD4.4 design that is described in TCP/IP Illustrated,
Volume 2[1]. Even though many changes were made since
then [1] still gives the best in depth introduction to the BSD
based network stacks. It is the number one reference for
most part of the network stack. Additionally IPv6 Core Pro-
tocols Implementation[2] covers the KAME derived IPv6
network stack implementation and should be considered the
reference for anything IPv6 related.

Figure 1: Building blocks of the network stack

The networking code can be split in four major building
blocks: the network stack, the mbuf API, the routing table
and the socket API. The various protocol support are
hooked into the network stack on various defined borders.
Protocols provide methods which are registered in a pro-
tosw structure. By looking up these structures instead of
calling the functions directly a more dynamic and easily
extensible stack can be built. There is an input and an
output path that starts in the drivers and ends in the socket
API and vice versa. Every packet passing through the net-
work stack is stored in mbufs and mbuf clusters. It is the
primary way to allocate packet memory in the network
stack but mbufs are also used to store non packet data. Eve-
rything routing related is covered by the protocol independ-
ent routing table. The routing table covers not only the layer
3 forwarding information but is also used for layer 2 look
ups -- e.g. arp or IPv6 network discovery. The calls to the
routing table code are scattered all over the network stack.
This entanglement of the routing code is probably one of
the most problematic parts when making the network stack
MP safe. Last but not least the socket API. It is the interface
to the userland and a real success story. The BSD socket
API is the most common way for applications to interact
between remote systems. Almost any operating system
implements this API for userland programs. I will not cover
the socket API because non of the new features modified the
socket API in detail.

mbufs

Packets are stored in mbufs. mbufs can be chained to build
larger consecutive data via m_next or build a chain of inde-
pendent packets by using the m_nextpkt header. m_data
points to the first valid data byte in the mbuf which has the
amount of m_len bytes stored. There are different mbuf
types defined to indicate what the mbuf is used for. The
m_flags are used in various ways. Some flags indicate the
structure of the mbuf itself (M_EXT, M_PKTHDR,
M_CLUSTER) and some indicate the way the packet was
received (M_BCAST, M_MCAST, M_ANYCAST6). If M_PKTHDR
is set an additional structure m_pkthdr is included in the
mbuf. The first mbuf of a packet includes this m_pkthdr to
store all important per packet meta data used by the net-
work stack. The complete length of the mbuf chain and the
interface a packet was received on are the most important
ones.

Code Fragment 1: mbuf structures

struct m_hdr {
 struct mbuf *mh_next;
 struct mbuf *mh_nextpkt;
 caddr_t mh_data;
 u_int mh_len;
 short mh_type;
 u_short mh_flags;
};

struct pkthdr {
 struct ifnet *rcvif;
 SLIST_HEAD(packet_tags, m_tag) tags;
 int len;
 int csum_flags;
 struct pkthdr_pf;
};

struct m_tag {
 SLIST_ENTRY(m_tag) m_tag_link;
 u_int16_t m_tag_id;
 u_int16_t m_tag_len;
};

Mbuf tags are generic packet attributes that can be added to
any packet. Mbuf tags are mostly used by the IPsec code
and to prevent loops in the network stack when tunnelling
interfaces are used. Up until OpenBSD 4.2 pf used the mbuf
tags to store internal state information (pkthdr_pf). Every
packet needs this state information if pf is enabled. Moving
this structure from mbuf tags directly into the m_pkthdr
almost doubled performance. The main reason of this speed
up is that the allocation of mbuf tags is skipped. Mtag allo-
cation is slow because malloc(9) needs to be used to allo-
cate the dynamic length elements. Information that has to
be added to every packet should probably be directly
included in the packet header.

Network

Socket API

Network Stack

Routing

Table

m
b

u
f

Driver

Userland

Kernel

OpenBSD – network stack internals Claudio Jeker
Figure 2: mbuf structures of two packets, 1st packet is built by
an mbuf chain of two mbufs (first mbuf with internal data

second with an external mbuf cluster).

Network Stack

Packets enter the network stack from userland through the
socket API or by the network driver receive interrupt func-
tion. Packets received by the network card enter one of the
layer 2 input functions -- ether_input() is the most com-
monly used one. This function decodes/pops off the layer 2
header and figures out the proper payload type of the data.
In the Ethernet case the ether_type is inspected but first it
is checked if it is a multicast or broadcast packet and the
corresponding mbuf flags are set. Depending on the payload
type an input queue is selected, the packet is enqueued and
a softnet software interrupt is raised. This interrupt is
delayed because IPL_SOFTNET has a lower precedence
then IPL_NET used by the driver interrupt routine. So the
driver can finish his work and when lowering the system
priority level the softnet interrupt handler is called. The
softnet handler checks netisr for any set bits and calls the
corresponding protocol interrupt handler. Most of the time
this is ipintr() or ip6intr() but the bridge, ppp and
pppoe code use the softnet handler as well. So the
splnet()/splsoftnet() dance has nothing to do with
the layer 2/layer 3 border.

ipintr() dequeues all packets in the protocol input queue
and passes them one after the other to ipv4_input().
ipv4_input() checks the IP header then calls
pf_test() to do the input firewalling. Now the destination
is checked and if the packet is not for this host it may be
forwarded. Local packets are passed to the transport layer.
Instead of hardcoding the corresponding handlers into
ipv4_input() a more object oriented approach is used by

calling the pr_input() function of a protosw structure.
The inetsw[] array contains the various protosw struc-
tures indexed by protocol family.

Figure 3: Network stack input flow

Common input functions are tcp_input(),
udp_input() and rip_input() -- rip stands for raw IP
and has nothing in common with the RIP routing protocol.
These input functions check the payload again and do a pcb
lookup. The pcb or protocol control block is the lower half
of a socket. If all is fine the packet is appended to the socket
receive buffer and any process waiting for data is woken up.
Here the processing of a network interrupt ends. A process
will later on call the soreceive() function to read out the
data in the receive buffer.
In the forward path a route lookup happens and the packet
is passed on to the output function.

Sending out data normally starts in userland by a write()
call which ends up in sosend(). The socket code then uses
the protosw pr_usrreq() function for every operation
defined on a socket. In the sosend() case pr_usrreq()
is called with PRU_SEND which will more or less directly
call the output function e.g. tcp_output() or
udp_output(). These functions encapsulate the data and
pass them down to ip_output(). On the way down the
output function is called directly (not like on the way up
where between the layer 3 and 4 the protosw structure was
used). In ip_output() the IP header is prepended and the
route decision is done unless the upper layer passed a
cached entry. Additionally the outbound firewalling is done
by calling pf_test(). The layer 3 functions invoke the
layer 2 output function via the ifp->if_output() func-
tion. For the Ethernet case, ether_output() will be
called. ether_output() prepends the Ethernet header,
raises the spl to IPL_NET, puts the packet on the interface

mtags mbuf

m
_

n
e

x
tp

k
t

m_tag_id

m_tag_len

m_tag_id

m_tag_len

m_tag_id

m_tag_len

m_tag_link

m_hdr

m_pkthdr

pkthdr_pf

m_hdr

m_pkthdr

pkthdr_pf

m_ext

mbuf

cluster

mbuf

cluster

m_hdr

m_ext

m_next

m
_

d
a

ta

ext_buf

ext_buf

m_data

m_data

1st packet

2nd packet

driver rx interrupt

dequeue from DMA ring

ether_input

ieee80211_input

sppp_input

ppp_inproc

atm_input

fddi_input

trunk_input

vlan_input

bridge_input

carp_input

revarpinput

NETISRIPL_SOFTNET

IPL_NET

ipintr

ip6intr

ipv4_input ip6_inputpf_test

arpintr

in_arpinput

pppoeintr

pppoe_disc_input

pppoe_data_input

protosw inetsw[]

tcp_input udp_input rip_input

rip6_input

sbappend

sorwakeup

IPsec

L
a

y
e

r
4

L
a

y
e

r
3

L
a

y
e

r
2

L
a

y
e

r
1

S
o

c
k

e
t

ip6_forwardip_forward

looutput

OpenBSD – network stack internals Claudio Jeker
output queue, and then calls the ifp->if_start() func-
tion. The driver will then put the packet onto the transmit
DMA ring where it is sent out to the network.

This is just a short fly through the network stack, in the real
world the network stack is much more complex due to the
complex nature of the protocols and added features. All the
control logic of the network stack is left out even though it
is probably the most obscure part of it.

Figure 4: Network stack output flow

Routing Table

The routing table uses the same patricia trie as described in
[1] even though minor extensions were done or are planned.
The routing table stores not only layer 3 forwarding infor-
mation but includes layer 2 information too. Additionally
the patricia trie is also used by pf tables. There is a lot of
magic in the routing table code and even minor changes
may result in unexpected side-effects that often end up in
panics. The interaction between layer 3 and layer 2 is a bit
obscure and special cases like the arp-proxy are easily for-
gotten. The result is that routing changes take longer then
expected and need to move slowly. Until now only routing
labels, multiple routing tables, and multipath routing were
implemented plus a major bump of the routing messages
was done. The routing messages structure was changed to
allow a clean integration of these features. Mainly the rout-
ing table ID had to be included into each routing header.

With a few tricks it was even possible to have some minimal
backward compatibility so that new kernels work with older
binaries.

Figure 5: Overview of the routing tables

Routing Labels
Routing labels were the first OpenBSD specific extension.
A routing label is passed to the kernel as an additional sock-
addr structure in the routing message and so the impact was
quite minimal. But instead of storing a string with the label
on every node a per label unique ID is stored in the routing
entry. The mapping is done by a name to ID lookup table.
Labels can be set by userland and pf can make decisions
based on these labels.

Multipath Routing
The implementation of multipath routing was initially from
KAME but additional changes were necessary to make
them usable. Especially the correct behaviour of the routing
socket was a challenge. Some userland applications still
have issues with correctly tracking multipath routes because
the old fact of one route one nexthop is no longer true.

Figure 6: rn_dupedkey and multipath routes

Multipath routing is abusing the possibility of storing the
same key multiple times in the routing table. This is allowed
because of possible more specific routes with the same net-
work address -- e.g. 10.0.0/24 and 10/8. Such identical keys

driver enqueue on tx DMA ring

ifp->if_start

ether_output

ieee80211_output

sppp_output pppoutput

atm_output

fddi_output

trunk_start

vlan_start

bridge_start

carp_output

ifp->if_output

IPL_SOFTNET

IPL_NET

ip_output ip6_output

pf_test

tcp_output

udp_output

rip_output rip6_output

protosw->pr_usrreq

sosend

IPsec

L
a

y
e

r
4

L
a

y
e

r
3

L
a

y
e

r
2

L
a

y
e

r
1

S
o

c
k

e
t

udp6_output

ip_forward ip6_forward

bridge_output

arpresolve

nd6_storelladdr

carp_rewrite_lladdr

looutput

rt_tables[]

0

1

AF_INET

AF_INET6

af2rtafidx[]

radix_node_head

AF_INET AF_INET6

rt_entry

rt_labelid

rt_priority

rt_label

name2id

table

ifp

rt_entry

addr: 10.1.0/24

nexthop: 10.11.4.2

rt_entry

addr: 10.1.0/24

nexthop: 10.11.4.1

rt_entry

addr: 10.1/16

nexthop: 10.3.7.1

rn_dupedkey

rn_p

rn
_
d
u
p
e
d
k
e
y

rn
_
p

rn_p

OpenBSD – network stack internals Claudio Jeker
are stored in the rn_dupedkey list. This list is ordered by
prefix length -- most specific first -- so all multipath routes
are consecutive.

In the network stack some route look ups had to be
exchanged with a multipath capable version.
rtalloc_mpath() is the multipath aware route lookup
which has an extra attribute -- the source address of the
packet. The source and destination address are used to
select one of the multiple paths. rtalloc_mpath() uses a
hash-threshold mechanism[3] to select one of the equal
routes and routes are inserted in the middle of the list of
paths. This more complex mechanism to select and insert
routes was chosen to keep the impact of route changes
small.

Special sysctl buttons were added to enable and disable the
multipath routing:

sysctl net.inet.ip.multipath=1

and/or:

sysctl net.inet6.ip6.multipath=1

Without these sysctl values set multipath routing is turned
off even if multiple routes are available.

Multiple Routing Tables
Multiple routing tables are a prerequisite for VRF. The first
step in supporting virtual routing and forwarding is to be
able to select an alternate routing table in the forwarding
path.

Every address family has a separate routing table and all
routing table heads are stored in an array. With regard to
VRF it was considered the best to always create a full set of
routing tables instead of creating per address family specific
routing tables. If a new routing table is created the
radix_node_heads for all address families are created at
once, see Figure 5. pf(4) is used to classify the traffic and
to select the corresponding forwarding table. At the moment
it is only possible to change the default routing table in the
IP and IPv6 forwarding path. For link local addressing --
e.g. arp -- the default table is used.

VRF
The idea behind virtual routing and forwarding is the capa-
bility to divide a router into various domains that are inde-
pendent. It is possible to use the same network in multiple
domains without causing a conflict.

To support such a setup it is necessary to be able to bind
interfaces to a specific routing table or actually building a
routing domain out of a routing table and all interfaces
which belong together. On packet reception the mbuf is
marked with the ID of the receiving interface. Changes to
the layer 2 code allow the use of alternate routing tables not
only for IP forwarding but for arp look ups as well. With
this, it is possible to have the same network address config-
ured multiple times but completely independent of each
other.

To create a system with virtualized routing many changes
are needed. This starts with making the link local discovery
protocols (arp, rarp, nd, ...) aware of the multiple domains.
The ICMP code and all other code that replies or tunnels
packets needs to ensure that the new packet is processed in
the same domain. A special local tunnel interface is needed
to pass traffic between domains and pf may need some
modifications as well. Finally the socket layer needs a pos-
sibility to attach a socket to a specific routing domain. The
easiest way to do this is via a getsockopt() call.

Unlike the vimage[4] approach for FreeBSD not a full vir-
tualization is done. The main reason behind this different
approach is in my opinion primarily the originator and his
background. In FreeBSD, vimage was developed by net-
work researchers the idea is to be able to simulate multiple
full featured routers on a single box. Therefore vimage goes
further then the OpenBSD implementation by having multi-
ple routing sockets, protosw arrays and independent inter-
face lists. In OpenBSD the development is pushed by
networking people with an ISP background. The end result
is similar but the userland hooks are different. In OpenBSD,
userland will have access to all domains at once through
one routing socket so that one routing daemon is able to
modify multiple tables at once.

Routing Priorities
With the inclusion of bgpd, ospfd, and ripd the need for
userland to easily manage various routing source in the
kernel became more apparent. In case of conflicts it is nec-
essary to have a deterministic mediator between the differ-
ent daemons. E.g. prefixes learned via OSPF should have a
higher preference than external BGP routes. Routing suites
like xorp and quagga/zebra normally use a separate daemon
to merge these various routing sources. This is a single
point of failure and unnecessary because the kernel can do
this just fine. Similar to commercial routers this can be done
by the kernel by adding a priority to each route and giving
each routing source one specific priority level. With the
introduction of multipath routing it is possible to store a
route multiple times in the kernel. Having a cost for each
route and sorting the list of equal routes by the cost gets the
desired behaviour. Only the routes with the lowest cost are
used for routing -- in other words, this is now equal cost
multipath routing.

Figure 7: Using rn_dupedkey to implement priorities

rt_entry

addr: 10.1.0/24
nexthop: 172.16.4.1

priority: static [8]

rt_entry

addr: 10.1.0/24
nexthop: 10.11.4.1

priority: ospf [16]

rt_entry

addr: 10.1/16
nexthop: 10.3.7.1

priority: bgp [32]

rn
_
d
u
p
e
d
k
e
y

rn
_
p

rn_p

rt_entry

addr: 10.1.0/24
nexthop: 10.11.4.3

priority: ospf [16]

OpenBSD – network stack internals Claudio Jeker
Implementing this simple concept on the other hand
released some evil dragons in the current routing code.
Until now, the multipath code only had to handle inserts
after the head element which is no longer true. The initial
result were corrupted routing tables, crashes, a lot of head
scratching, and even more debugging. The routing code and
especially the radix tree implementation itself is complex,
obscure, and a very sensitive part of the networking code.

References

[1] TCP/IP Illustrated, Volume 2
by Gary R. Wright, W. Richard Stevens

[2] IPv6 Core Protocols Implementation
by Qing Li, Tatuya Jinmei, Keiichi Shima

[3] Analysis of an Equal-Cost Multi-Path Algorithm,
RFC 2992, November 2000

[4] The FreeBSD Network Stack Virtualization
http://www.tel.fer.hr/zec/vimage/
by Marko Zec

	Introduction
	mbufs
	Network Stack
	Routing Table
	Routing Labels
	Multipath Routing
	Multiple Routing Tables
	VRF
	Routing Priorities

	References

