
SMP Implementation for OpenBSD/sgi

Takuya ASADA
syuu@openbsd.org

Abstract

We started to implement SMP support for the
OpenBSD/sgi port and selected the SGI Octane as the
first target machine. We are now at the point where we
have almost finished, except for the implementation of
some non-critical features. SMP support is now oper-
ational on SGI Octane systems and the code has been
merged into the OpenBSD tree.

1 Introduction
A year ago, I was working to add SMP and 64 bit sup-
port to a BSD-based embedded operating system. The
target device was based on the MIPS64 architecture.
At that time only FreeBSD had started to support SMP
on MIPS, however only some of their code had been
merged into the public repository. As a result, I tried to
implement SMP support in a step-by-step manner, refer-
ring to the SMP implementations on other architectures.

That implementation was proprietary, but I wanted to
contribute something to the BSD community using the
knowledge gained. I decided to implement SMP from
scratch again and tried to find a suitable MIPS multi-
processor machine as a target device. I found a cheap
SGI Octane, which is capable of two cores and is sup-
ported by OpenBSD. I obtained an SGI Octane2 and
have been working on it since April 2009. I wrote about
my progress and provided patches in my blog. Miod
Vallat discovered it and contacted me to suggest that my
code be merged into OpenBSD’s main repository.

I become an OpenBSD developer in September 2009
and started merging the code. I participated in the Hard-
ware Hackathon (h2k9), held at Coimbra, Portugal in
November 2009. I worked with Miod Vallat and Joel
Sing and we finally reached the point where a process
could be woken up on the secondary processor. Devel-
opment continued after the hackathon and we are now
at the point where we have almost finished the SMP
implementation, except for some non-critical features
(e.g. switching processors within ddb via “ddb machine
ddbcpu<#>”).

2 OpenBSD SMP overview

2.1 History
The OpenBSD project started work on SMP support for
various architectures in February 2000. As result, we

now have SMP support on the i386, amd64, mvme88k,
sparc64 and macppc platforms.

Recently, sgi was added to the list of officially
supported architectures but without SMP support, de-
spite the SGI hardware range including multiprocessor
servers and workstations. We started to implement SMP
support for OpenBSD/sgi and selected a SGI Octane as
the first target machine.

2.2 Current status

OpenBSD SMP now works correctly, however perfor-
mance is still limited. The stage of our implementation
is similar to the early versions of FreeBSD and NetBSD.
A significant amount of work still needs to be done in
order to improve performance and scalability.

2.2.1 Giant lock

OpenBSD employs a Big Giant Lock model. In this
model, we need to acquire a lock every time we enter the
kernel, in order to prevent kernel code from executing on
multiple processors at the same time. We can preserve
legacy code with this model, however it does not scale
well compared to more recent implementations that are
based on fine-grained lock models.

2.2.2 Lock primitives

We have rwlock and mutex to implement MP-safe kernel
components. An rwlock provides a multi-reader, single-
writer locking mechanism to ensure mutual exclusion
between different processes. It is a sleep mutex, so the
current process will go to sleep if the lock is busy. This
is useful in situations such as block I/O, where a process
will take time to complete an operation.

A mutex provides a non-recursive, interrupt-aware
spinning mechanism to ensure mutual exclusion be-
tween different processors. It spinlocks and modifies
the interrupt priority level (SPL) at the same time. If
old code uses SPL operations for synchronization they
should be replaced by a mutex, but it cannot be used re-
cursively. We can also use it to protect shared data within
a SMP kernel.

Many subsystems are being rewritten to be giant lock
free using these primitives, however this is still a work
in progress.



2.2.3 Scheduler

The OpenBSD scheduler is based on the traditional
4.4BSD scheduler, with some enhancements for SMP
support. Each processor has its own runqueue. The
scheduler balances and dispatches processes to idle pro-
cessors.

2.2.4 rthread

An rthread is a 1:1 native kernel thread library, imple-
mented using the rfork system call. In the kernel, a
thread is realized as a normal process with a special flag,
which is set in rfork. rthreads is not the default thread
library yet, due to performance and stability issues, and
it is still a work in progress. The default thread library
is libpthread, which is a userland thread implementation
that cannot benefit from SMP.

3 SGI Octane overview

3.1 History

An SGI Octane is a high-end graphics workstation,
which is based on the MIPS architecture and is designed
to run IRIX. The original version named ”Octane” was
manufactured between 1997 and 2000, with an updated
version named ”Octane 2” being manufactured between
2000 and 2004. Both models share almost the same ar-
chitecture which can be configured as a multiprocessor
system. There are uniprocessor models and dual proces-
sor models of both the Octane and Octane2.

Hardware documentation is limited since SGI never
openly disclosed a detailed hardware specification. As a
result we can only refer to the Octane-specific header
files found on IRIX (/usr/include/sys/RACER/), and
Linux kernel patches for Octane (http://www.linux-
mips.org/˜skylark/).

Figure 1: SGI Octane image

Processors MIPS R10000/R12000
175-400MHz x 1 or 2

Memory 128MB-4GB SDRAM
Graphics 3D Graphics board
Sound Digital Audio board
Storage 4/9GB Ultra Fast/Wide

SCSI HDD
Communications 100BASE-TX port x 1,

RS422/RS433 x 2,
Parallel port x 1

Table 1: SGI Octane specification

3.2 MIPS R10000
The SGI Octane has one or two R10000 processors - in
this section we describe their features and the challenges
involved with implementing SMP on this processor.

3.2.1 Coherent cache and operations for
multiprocessor

One of the most important features of this processor is
its fully coherent cache. The other important feature
is the synchronization system between multiple proces-
sors. There are some instructions for synchronization:

SYNC operation The SYNC instruction is used for
ordering loads and stores from shared memory. It waits
for preceding loads and stores to complete.

LL/SC operations The LL/SC instructions are the
implementation of Load-Link/Store-Conditional opera-
tions on the MIPS architecture. We need it to implement
lock-free atomic read-modify-write operations. The LL
operation loads a value from a memory location to a reg-
ister. The SC operation checks if the value has been
changed since LL executed by using the cache line. If
it has changed then it stores zero to the register, meaning
that SC has failed. Otherwise it continues to store the
value to the memory location.

We use these instructions often when implementing
atomic functions and lock functions.

3.2.2 TLB Consistency
Software TLB The MIPS TLB is a software TLB,
which means that the operating system must manage
the TLBs. For example, if a processor causes a TLB
miss exception then the hardware does not do anything
else. Instead, the operating system must handle the ex-
ception, lookup the page table and find the physical ad-
dress paired with requested virtual address. This means
that all software TLB management functions need to be
MP-safe, including the data structures they use.



ASID: Address Space Identifier On the MIPS ar-
chitecture each TLB entry is tagged with an 8 bit Ad-
dress Space Identifier (ASID). Each process should be
assigned an individual identifier and the current process
identifier should be set when a context switch occurs.
This allows the processor to distinguish between TLB
entries that are for the current process and those which
are not. This can improve system performance since we
do not need to flush TLB entries on every context switch.

However, in order to make the memory management
routine MP-safe, the ASID first needs to be managed
on a per-processor basis. The next step is to think about
what will happen if a TLB entry could remain, even after
switching to a different process. If that process moves to
another processor and invalidates or updates the same
entry, there will be an inconsistency. You can use ASID
to solve this problem. We do not need to flush the TLB
via a TLB shootdown in this case, instead we can change
the ASID assigned to the process and the entry will no
longer be used.

3.3 MPCONF

MPCONF is a bank of hardware registers used to con-
trol secondary processors and retrieve configuration in-
formation from them. Each secondary processor has one
entry in MPCONF, with each entry having the following
registers:

MAGIC magic number
(0xbaddeed2 if cpu exists)

PRID processor revision ID
PHYSID physical CPU ID
VIRTID virtual CPU ID
MP SCACHESZ secondary cache size
FANLOADS unknown
LAUNCH launch function address

(entry point) / cpu spin up trigger
RNDVZ rendezvous function address
STACKADDR stack pointer address
LPARAM arguments for LAUNCH
RPARAM arguments for RNDVZ
IDLEFLAG unknown

Table 2: MPCONF registers

To spinup a secondary processor we need to access
the LAUNCH register as a minimum.

3.4 HEART

HEART consists of a bus and an interrupt controller de-
vice. On an Octane most devices are connected to the
HEART widget. HEART provides two kinds of regis-
ters for interrupt handling - IMR and ISR. IMR stands

for Interrupt Mask Register, which allows interrupts to
be masked or unmasked on a per-processor basis. Each
bit in the mask represents an IRQ. There are four IMR
registers, allowing for up to four processors to be sup-
ported.

ISR stands for In-Service Register and it is divided
into three registers, which are set-only, clear-only and
read-only register. If an interrupt handler has completed
then it needs to clear the interrupt. The CLRISR register
is used for this purpose. The SETISR is the opposite of
the CLRISR register; writing to it triggers an interrupt.
This will not generally be used to handle external inter-
rupts, however it can be used to trigger Inter-Processor
Interrupts (IPIs). IRQs 46-49 are reserved for this pur-
pose.

Memory configuration registers
(SDRAM MODE, MEMCFG0-3 ...)
Interrupt registers
(IMR0-3, SETISR, CLR ISR, ISR ...)
Misc registers
(COUNT, COMPARE, PRID ...)

Table 3: HEART registers

HEART also contains another useful register named
PRID. This register allows the ID of the current proces-
sor to be obtained.

4 Tasks for SMP support on Octane

4.1 Support multiple cpu info and proces-
sor related macros

We have a structure named cpuinfo for per-processor
data storage. There are a number of macros and func-
tions to support using cpuinfo.

The curcpu() macro can be used to access a pointer
to the current processor’s cpuinfo structure. In the
original code this macro simply returned a refer-
ence to a statically allocated cpuinfo structure named
“cpu info primary”. We changed this so that the
cpu info structure is allocated dynamically, with a
pointer to this structure being stored in an array in-
dexed by processor ID. This structure is allocated per-
processor when a processor executes its initialization se-
quence.

The cpunumber() macro can be used as a processor
identifier. Initially this was defined to be ”0” since there
was only one processor. We changed the marco so that it
fetches the ID of the current processor from a hardware
register (PRID on HEART, as described above).



/* uniprocessor code */
extern struct cpu_info cpu_info_primary;
#define curcpu() (&cpu_info_primary)
#define cpu_number() 0
...

/* multiprocessor code */
extern struct cpu_info *cpu_info[];
#define curcpu() (cpu_info[cpu_number()])
#define cpu_number() \

(*(uint64_t *)HW_CPU_NUMBER_REG)
...

We are planning to use a hardware register (LLAddr
in cp0) to store the pointer to the cpuinfo structure, in
order to improve curcpu() performance. This code has
been implemented but not yet merged.

4.2 Move per-processor data into cpuinfo
In the original code the following information was stored
in global variables even though it is per-processor infor-
mation: running process information, interrupt priority
level, pending interrupt, trapdebug, interrupt depth, etc...

All of these variables were moved into the cpuinfo
structure and the code which referenced these vari-
ables was modified to reflect the changes. Since some
assembly code refers to these variables, we imple-
mented an assembly macro version of curcpu(), named
GET CPU INFO(). One exception was the astpending
global variable, which was moved into the per process
data structure.

4.3 Lock primitives

4.3.1 rwlock
To use a rwlock in a SMP kernel, you should implement
rw cas(), which is a compare and swap function. A stub
for rw cas() is defined by default, but it is only a unipro-
cessor implementation.

4.3.2 mutex
Mutexes can be implemented using splraise(), splx() and
the rw cas() function. A pseudo code implementation is
as follows:

mtx_init(mtx, wantipl) {
mtx->mtx_lock = 0;
mtx->mtx_wantipl = wantipl;
mtx->mtx_oldipl = IPL_NONE;

}

mtx_enter_try(mtx) {
s = splraise(mtx->mtx_wantipl);
if (compare_and_swap(&mtx->mtx_lock, 0, 1)

== success) {
mtx->mtx_oldipl = s;
return 1;

} else {
splx(s);
return 0;

}
}

mtx_enter(mtx) {
while (mtx_enter_try() == 0)

/* loop */ ;
}

mtx_leave(mtx) {
mtx->mtx_lock = 0;
splx(mtx->mtx_oldipl);

}

4.3.3 mp lock
An mp lock is a spin lock primitive for giant locks. Un-
like a mutex, mplock can be used recursively on same
processor. This allows interrupts or exceptions to be
handled whilst holding a giant lock.

The same processor can acquire a mplock more than
twice, simply by incrementing the lock counter. Other
processors will not be able to acquire the mplock until
all locks have been released at which point the counter
will return to zero. Note that when the lock first succeeds
the counter value will be two - this provides protection
for the mplock structure when unlocking.

A pseudo code implementation is as follows:

__mp_lock_init(mpl) {
mpl->mpl_cpu = NULL;
mpl->mpl_count = 0;

}

__mp_lock(mpl) {
while (1) {

disable_interrupt();
if (compare_and_swap(&mpl->mpl_count, 0, 1)
== success)

mpl->mpl_cpu = curcpu();
if (mpl->mpl_cpu == curcpu()) {

mpl->mpl_count++;
enable_interrupt();
break;

}
enable_interrupt();

}
}

__mp_unlock(mpl) {
disable_interrupt();
if (--mpl->mpl_count == 1) {

mpl->mpl_cpu = NULL;
mpl->mpl_count = 0;

}
enable_interrupt();

}

4.4 Acquiring giant lock
We need to acquire giant lock at trap(), software inter-
rupts and hardware interrupts, prior to entering the ker-
nel context.

4.5 Atomic operations
The original code already had atomic operations, how-
ever some extra operations were added to facilitate the
SMP implementation.



4.6 Spin up secondary processors

Spin up code is needed in order to boot secondary pro-
cessors. You need to determine which processors are to
be booted after cpuattach() and set the appropriate flags
within their cpuinfo structure.

Late in the boot process the kernel calls a function
named cpuboot secondaryprocessors(). This iterates
over the cpuinfo array to find and spin up target proces-
sors. In order to spin up secondary processors we need
to set various parameters (entry point address, stack ad-
dress, etc...) and turn on the processor by writing to the
multiprocessor controller hardware registers.

The SGI Octane has control registers called MPCONF
for this purpose. The spin up function writes values to
these registers. The actual steps taken by our implemen-
tation are as follows:

1. calculate base address of MPCONF entry using
cpuid

2. allocate bootstrap stack
3. set allocated stack address to STACKADDR
4. set cpuinfo pointer to LPARAM
5. set secondary processor entry point address to

LAUNCH

4.7 Secondary processor entry point

When a secondary processor spins up it needs to run
some initialization code. This is similar to the primary
processor boot sequence, however we do not need to
perform kernel initialization since this has already been
done by the primary processor at boot time.

Our implementation executes the following in order to
enable process scheduling on the secondary processor:

1. disable interrupts
2. load global register
3. cache initialization
4. TLB initialization
5. clock initialization
6. ipi initialization
7. interrupt controller initialization
8. enable interrupt
9. start scheduling

4.8 IPI: Inter-Processor Interrupt

IPI is a type of interrupt used by one processor to send
an interrupt to another processor. On Octane, we use
HEART to implement IPIs, which are then used for TLB
shootdowns and cpuunidle().

4.9 Per-processor ASID management

As described previously, the MIPS TLB has a tag on
each entry to identify which process it belongs to. Since
it is only 8 bits in size (much smaller than the process

ID) the kernel has to maintain a PID to ASID map. Al-
though the original code used global variables for this
purpose, we changed it to use per-processor variables.
The pmap structure also has an ASID entry, which we
also changed to be per-processor since it is not neces-
sary to share ASIDs between processors.

4.10 TLB shootdown

When multiple processors share the same page table en-
tries we will hit TLB consistency problem. While each
processor runs different processes they will not share
page table entries because each process has individual
page tables. However, in the following cases it will share
the entries:

• kernel pages
• page shared by multiple processes, each process

may run on a different processor at the same time
• a process that has multiple kernel threads, each pro-

cess may run on different processor at the same
time

Since typical hardware does not have a mechanism
to keep the TLB consistent between multiple processors
automatically, we have to keep it consistent within soft-
ware. There is an algorithm called ‘TLB shootdown’
which can achieve this using IPIs. The basic concept is
as follows:

1. block all other active processors (these can be iden-
tified by checking the active flag) via IPI

2. change the TLB entry on the local processor
3. invalidate the old entry on all other active proces-

sors

Whilst this process works, it is slow and does not
scale well because it often blocks multiple processors.
Platform dependent techniques can be used in order
to reduce blocking time or frequency. We referred to
FreeBSD/mips, which has implemented a simple TLB
shootdown.

4.11 Lazy FPU handling

In the original code FPU registers were not saved during
a context switch, rather they are only saved when another
process starts using FP. This is called lazy FPU handling
and tries to reduce the frequency of FP context switches
in order to save CPU time.

However, it does not work well in an SMP environ-
ment. On an SMP system a process can be migrated to
another processor if the current processor is busy. If a
process is switched without saving its FPU context, we
will lose the data stored within these registers. We can
delay register saving until the process is migrated to an-
other processor, however we decided not to implement
lazy FP handling on SMP for now.



4.12 Per-processor clock

We need a per-processor clock to make process schedul-
ing work correctly. On Octane this is easily achieved
since each processor has its own internal clock. All we
needed to do was change the clock driver to maintain
clock information per-processor rather than globally.

5 Ideas implementing SMP

We have faced a number of issues while implementing
SMP, which we managed to solve. Some of the issues
and solutions are presented here.

5.1 Writing assembly code using only 2
registers

There was a small challenge in implementing
GET CPU INFO(): the TLB miss handler skips a
context switch, thus we could only use two registers
named “k0” and “k1”, which are reserved for kernel
operations1. To fulfill this requirement this macro takes
two arguments which specifies the registers that are to
be used:

/* uniprocessor code */
tlb_miss:

PTR_L k1, curprocpaddr
dmfc0 k0, COP_0_BAD_VADDR

...

/* multiprocessor code */
tlb_miss:

GET_CPU_INFO(k1, k0)
PTR_L k1, CI_CURPROCPADDR(k1)
dmfc0 k0, COP_0_BAD_VADDR

...

5.2 Dynamic memory allocation without
using a virtual address

To support an arbitrary number of processors, the
cpu info structure and the bootstrap kernel stack for
secondary processors should be allocated dynamically.
However, using malloc() to allocate them causes a prob-
lem since malloc() returns a virtual address when a phys-
ical address is required. If we try to use a virtual address
for the bootstrap stack, it may be used before the TLB is
initialized, thus causing the processor fault.

If we use a virtual address for cpuinfo it causes an in-
finite fault loop, due to the fact that the TLB miss handler
refers to the cpuinfo structure - the TLB miss handler
causes a TLB miss exception, which re-runs the TLB
miss handler, looping forever.

To avoid these problems we implemented a wrap-
per function which allocates memory dynamically using
malloc() or uvmpglistalloc() (depending on the alloca-
tion size), before obtaining and returning the physical
address for the memory allocated.

5.3 Reduce frequency of TLB shootdown
In the FreeBSD/mips pmap implementation, a TLB
shootdown is performed for every TLB invalidate and
update, however the shot processor decides if the TLB
invalidate/update is needed or not. Our implementation
was very inefficient, so we modified the code so that a
TLB shootdown is only performed if it really is neces-
sary. Otherwise we just increment the ASID generation,
etc.

5.4 Calculate size of struct pmap on boot
time

As described earlier, the pmap structure should have
ASID entries for all processors. However, we do not
know how many processors will exist in the system at
the time of compilation. The kernel detects the number
of processors during the boot process, hence we can cal-
culate the size of the pmap structure at boot time.

We defined the pmap structure with pmasid[1] as fol-
lows:

typedef struct pmap {
int pm_count;
simple_lock_data_t pm_lock;
struct pmap_statistics pm_stats;
struct segtab *pm_segtab;
struct pmap_asid_info pm_asid[1];

} *pmap_t;

Then we use PMAPSIZEOF(n) instead of
sizeof(struct pmap) when allocating its size.

#define PMAP_SIZEOF(x) \
(ALIGN(sizeof(struct pmap) + \
(sizeof(struct pmap_asid_info) * ((x) - 1))))

pool_init(&pmap_pmap_pool,
PMAP_SIZEOF(ncpusfound),
0, 0, 0,"pmappl", NULL);

This idea is borrowed from NetBSD/alpha, which also
has an ASID (although they call it ‘ASN’ instead).

5.5 Fighting against deadlock
It was hard to find the cause of deadlocks that occurred
when both processors were running concurrently. Be-
cause they are a result of timing bugs caused by two con-
flicting processors, we need to be able to determine what
happened on both processors at that time. It was likely
that there is no way to use JTAG ICE on Octane, hence
we only used printf() for debugging.

In order to figure out which lock the processors were
stacking on, we placed counters and debug prints in ev-
ery type of spinlock. If the lock continues to spin too
much it will print a message.

It might seem like a good idea to execute the kernel
debugger at that moment, in order to reveal its stack-
trace.



Unfortunately, this is not overly useful since we have
not yet implemented ddb machine ddbcpu<#> - this
means that we cannot switch processor from within ddb.
As a result, we can only see the status of the blocked
processor and cannot determine the status of the locked
processor.

We temporarily implemented code which executes
ddb on the locked processor using an IPI, but this was
useless because we could only get the stacktrace from
ddb after the IPI interrupt had occurred.

We then decided to record the return address when we
acquire a lock. By printing the return addresses out as
debug messages we can determine who acquired the lock
when the lock blocks. Most deadlocks were revealed
to occur in the rendezvous point of the TLB shootdown
function, so we placed counters and debug printing code
there.

It was hard to read the debug messages output from
two processors on one console, hence we hacked up a
serial driver for the second serial port and separated the
output per-processor - the first processor (cpu0) outputs
to the first serial port and the second processor (cpu1)
outputs to the second serial port.

If a TLB shootdown causes a deadlock, it is important
to check whether the blocked processor has accepted an
IPI or not. We dumped the cp0 status register to check
the interrupt enable bit and the interrupt mask status. We
also checked that the current IPL is equal to the interrupt
mask on the processor.

We iterated over these approaches again and again,
until we finally found and fixed the following bugs:

5.5.1 Interrupt and exception blocks IPI
If CPU A triggers a fault and causes a TLB shootdown,
and CPU B is interrupted after CPU A got the fault but
before CPU A sends the IPI, a deadlock would occur.
This occurs since CPU A has acquired the kernel lock
before the TLB shootdown and is waiting for CPU B
to execute its IPI handler. CPU B blocks the IPI inter-
rupt because interrupts have been disabled and it then
waits for CPU A to release the kernel lock, which will
never happen. This could occur during software inter-
rupts, hardware interrupts and traps. To avoid this prob-
lem IPI interrupts were enabled in all handlers.

5.5.2 splhigh() blocks IPI
If CPU A triggers a fault and causes a TLB shootdown,
CPU B has masked interrupts via splhigh() and has tried
to lock the kernel after CPU A has triggered the fault
but before sending the IPI, a deadlock would occur. The
reason is almost the same as the interrupt/exception -
CPU B blocks IPI interrupts because it has been masked
via splhigh, so it waits forever. We redefined IPLIPI to
be higher than IPLHIGH in order to prevent masking

IPIs at splhigh. After this change an IPI can interrupt
the operation, even when at IPLHIGH.

6 Development status and future works
We are now at the point where we have almost finished,
except for the implementation of some non-critical fea-
tures (e.g. machine ddbcpu<#>). SMP is now oper-
ational on SGI Octane systems and the code has been
merged into the OpenBSD tree. You can download it
from an OpenBSD CVS repository and try it now.

I am also interested in the machine independent part
of SMP implementations and I wish to work on these
areas too.

7 Acknowledgments
Thanks to Miod Vallat for inviting me to the OpenBSD
project. He helped every time I faced a difficulty. I really
appreciate his help.

Thanks to Naoki Hamada for providing me with an
Octane. He brought me lots of knowledge about kernel
hacking and also supported writing this paper.

Thanks to Joel Sing for working together at the
OpenBSD hardware hackathon. He took me to the
hackathon room. I even could not reach there without
his help.

Also thanks to all OpenBSD developers who helped
with this work, and Livedoor coworkers for supporting
me to work on OpenBSD project.


