
OpenBSD audio & MIDI framework for music and desktop applications

Alexandre Ratchov

alex@caoua.org

AsiaBSDCon 2010 — Tokyo, Japan

Abstract

sndio is an enhancement of OpenBSD audio and MIDI sub-
systems. It features an audio and MIDI server and pro-
vides a new library-based API. The framework is designed
with certain constraints of music applications in mind: strict
latency control and precise synchronization between audio
streams. It supports resampling and format conversions on
the fly, sharing devices between multiple applications, split-
ting a device in multiple subdevices and synchronization
with non-audio applications.

Simplicity of the architecture, the design and the imple-
mentation are of first importance, attempting to obtain a
lightweight, fast and reliable tool.

1 Introduction

Desktop and music audio applications require the operating
system to expose audio and MIDI hardware. But there’s a
gap between applications requirements and what the hard-
ware provides. The gap is filled by the high-level audio sub-

system, a layer between applications and device drivers. It
could be used to convert streams from application format
to device format; to mix multiple streams allowing concur-
rent access to the device; to expose the audio stream clock
to non-audio applications; to provide a mechanism to syn-
chronize audio streams allowing multiple simple programs to
be used to perform a complex task. The sndio framework
attempts to address part of these problems on OpenBSD.
There are several existing solutions to these problems.

NetBSD has a kernel audio framework [4] that handles
format conversions and resampling only; it allows running
most applications on most supported hardware, but does
not allow running multiple audio applications simultane-
ously. FreeBSD has a similar kernel framework [5] that
can also split hardware devices in multiple logical devices
and apply digital effects on the fly; it allows sharing devices
between multiple programs, but provides no system level
mechanism to synchronize them. OSS is a commercial open
sourced kernel framework provided by 4Front technologies
with similar features to FreeBSD’s one. All these implemen-
tations expose APIs based on system calls (as opposed to
libraries). Linux uses ALSA: a rich and complex framework
running as a user-space library [6]. It’s based on plug-ins
processing audio streams on the fly. Plug-ins exist for vir-
tually anything, including mixing, effects, conversions, re-
sampling.

To overcome audio subsystem limitations certain user-
space libraries and audio servers can be used. For instance
GNOME and KDE projects used to use esound and artsd

to overcome linux audio subsystem limitations before ALSA
became available; now they are replaced by pulse which has
yet more features than ALSA plug-ins [7, 8].

Above kernel or user-space frameworks suppose that au-
dio applications are independent, i.e., that synchronization
or data exchange between applications are not handled by
the audio subsystem. Such frameworks are usable for mu-
sic production (or other more complex audio tasks) as long
as all audio-related processing is done inside a single mono-
lithic program. The jack [9] framework overcomes this limi-
tation: it allows programs to cooperate: they can pass data
synchronously to each other; furthermore, jack provides a
synchronization mechanism for non-audio applications. On
the other hand, jack supports only one sample format and
runs at fixed sample rate, which is acceptable for music ap-
plications. In theory jack could be used for desktop also,
but other frameworks have been privileged by Linux desktop
distributions.

The proposed sndio framework, attempts to meet most
requirements of desktop applications, but pays special at-
tention to synchronization mechanisms required by music
applications. The current implementation supports conver-
sions, resampling, mixing, channel mapping, device split-
ting, and synchronization of audio streams. Additionally,
per-application volume and synchronization are controlled
by standard MIDI protocols, allowing interoperability not
only with MIDI applications but also with MIDI hardware
connected to the machine. These aspects are novel in the
Unix world. Simplicity and robustness of the architecture,
the design and the implementation are part of the require-
ments; thus certain complicated or non-essential features
are not provided (e.g., effects, monitoring, network trans-
parency).

First, we present the problem sndio attempts to solve and
the project goals. Then we discuss all technical choices at-
tempting to show they are a natural consequence of project
goals. Then we present the resulting sndio architecture. Fi-
nally we show few use-cases to illustrate how sndio is used
in real-life.

2 The problem to solve

Need for conversions. New, professional audio inter-
faces may expose 32-bit formats only, few fixed sample rates
and a large number of channels. Such parameters are not
supported by most common audio applications, so format
conversions are necessary. This is also true, to a lesser ex-
tent, for audio interfaces integrated in laptops and desktop
computers.

1



Sharing the device between applications. Most audio
interfaces can play or record only one stream at a given time.
Basically, this means that only one application may use the
device at a given time. To allow concurrent playback or
recording, the audio subsystem must be able to mix multiple
streams.

Splitting the device in subdevices. Modern audio in-
terfaces may have a lot of channels. In certain circum-
stances, it is desirable to split a device into multiple in-
dependent subdevices; for instance, multichannel hardware
could be split into two subdevices: one reserved to tele-
phony (e.g., headphones and microphone) and another one
for desktop noises and music (e.g., speakers).

Synchronization. Performing complex tasks using mul-
tiple small tools, each performing a simple task is part of the
Unix philosophy1 [1]. In the audio and MIDI domain, this
requires simple tools, not only to have access to the audio
hardware, but also to be able to work synchronously. The
MIDI protocol provides synchronization mechanisms, and
the aim of this work is to integrate them at system level,
allowing audio applications to cooperate without the need
for intrusive code modifications.

Fault-tolerance. If a transient error condition causes the
audio subsystem to fail, then it should recover once the er-
ror condition is gone. For instance, if a system load burst
causes a buffer to underrun (and the sound to stutter), then
no application should go out of sync, including non-audio
applications synchronized to the audio stream. The user
should only observe a transient quality degradation.

Simplicity This is not a technical requirement, neither is
it specific to audio. Complicated code leads sooner or later
to bugs and fails. Complicated APIs tend to be misused,
lead to bugs and fail. Complicated software with too many
knobs tend to be misused by the user and fails. The goal
of this project is not to support everything, but to handle a
small and consistent set of use-cases and to provide a reliable
audio framework for audio development.

3 Design considerations

3.1 Performance vs. responsiveness

Performance is related to the CPU time consumed to per-
form a given task, while responsiveness measures how fast
an event is processed. There’s no direct relation between
performance and responsiveness: depending on what a pro-
gram is designed for, it may have bad performance and good
responsiveness or the opposite.

An audio server is a I/O bounded process: after all it’s
supposed to be only a thin layer between the application
and the device driver. Thus, its total CPU consumption
is very small and is supposed to be negligible compared to
the CPU resources available on the machine. So “wasting”

1Write programs that do one thing and do it well. Write programs
to work together. — Doug McIlroy

CPU cycles is not a problem as long the total CPU time
consumed stays negligible.

Responsiveness, on the other hand, is of first importance:
for instance, the audio server must produce data to play as
soon as the device requests it, to minimize the chances of
buffer underruns which cause the sound to stutter. Simi-
larly, a MIDI “play note” event incoming from a MIDI key-
board must be processed immediately and transmitted to
the synthesizer which will produce the actual sound.

3.2 Kernel vs. user-space

On Unix-like systems, audio hardware is accessed through a
character device driver. Conversion, mixing, and resampling
code is an intermediate layer between the device driver and
the application. Only the device driver must run in kernel
space; conversions and mixing can be performed either in
user-space as a regular user process or in kernel mode.

In a user-space implementation, the application produces
audio data, transmits it to the audio server, which in turn
processes the data and transmits it to the kernel. In a
kernel-only implementation, the application produces audio
data and transmits it directly to the kernel, which does the
conversions and transmits the result to the hardware.

3.2.1 Overhead of data copying

In a kernel-only implementation, communication between
a user-space process and the kernel uses read and write

system calls which copy data from one address space to an-
other; obviously, this data copying is useless. In a user-
space implementation, things are even worse: the applica-
tion transmits data to the audio server using sockets which
involves two extra copies of the data.

Copying data may consume almost as much CPU time as
processing it, but generally this is not a problem as long as
the total CPU time consumed is negligible. For instance, on
a Sharp SL-C32002, which we consider as “not very fast”,
the overhead of the extra copying is around 50% of the CPU
consumption, which might seem significant. However, this
corresponds to only 0.5% of the CPU time available on the
machine, which we’ll consider as acceptable3.

The basic problem of unnecessary data copying is not
about kernel vs. user-space implementation; indeed a
kernel-only implementation is already subject to unneces-
sary data copying. The basic problem is in not using shared
memory for audio communication. This is a general prob-
lem; we leave switching OpenBSD audio to zero-copy audio
data exchange scheme as a future project, and we don’t take
it into account in this design.

2This machine has a Intel PXA27x ARM processor at 416MHz and
runs the OpenBSD “zaurus” port.

3A rough estimation of the percentage of extra CPU time spent in
copying data between two address spaces is easily obtained by com-
paring CPU usages of the following two commands:

$ dd if=/dev/zero | dd of=/dev/null

$ aucat -n -i /dev/zero -o - | dd of=/dev/null

the second command runs the “aucat” audio server in loopback mode;
in this mode it uses its standard output and input as its playback and
recording devices [11].

2



3.2.2 No extra latency

The audio latency is the time between the application starts
providing samples to the system and the time the user hears
them. Samples are buffered and buffers are consumed by the
audio hardware at constant rate (the sample rate), thus the
latency is simply proportional to the buffer size.

Whether buffers are stored in kernel memory or user-
space memory doesn’t matter for the latency. Only the
end-to-end buffer usage matters for latency.

3.2.3 Stability: underruns and overruns

When the playback buffer underruns, the audio interface
has no samples to play anymore, and inserts silence to play,
causing the sound to stutter. Underruns may cause the ap-
plication to loose it’s synchronization; while this is annoying
for video to audio synchronization, it’s catastrophic for mu-
sic performance.

In an user-space implementation, to avoid buffer under-
runs, the application must grab the CPU fast enough and
produce samples to play; then, the audio server must grab
the CPU immediately and submit the samples to the device.
If the application or the server are delayed, then the driver
will not receive audio data to play at time.

In a kernel implementation, the kernel processes the data
and transmits it to the audio device in a single shot, i.e.
without being preempted. Compared to the user-space im-
plementation, the kernel implementation is not subject to
underruns caused by the audio server only.

However that doesn’t mean that in real-life kernel imple-
mentation gives a noticeable gain of audio stability. Imple-
menting the audio subsystem in kernel space will prevent
the server from underruns, but in case the system is busy,
the application will underrun anyway, causing stuttering.

One may argue that in the case of an user-space im-
plementation there may be underruns caused only by the
server, i.e the application is run at time but the server exe-
cution is delayed. The author experience is that this never
happens: all processes are equally subject to delays. Fur-
thermore the most a process is CPU intensive, the most
chances it has to underrun and one of the main requirement
for the sndio implementation is to be lightweight.

3.3 Server vs. library

Only operations involving all streams, like mixing, strictly
need to be implemented in the server process. Since con-
versions, resampling and channel mapping are specific to
a single stream, they can be performed by the application
itself for instance by wrapping functions to read and write
samples. In both implementations, the code is the same and
is running in user-space.

The main advantage of the library approach is to not
require the audio server if the user plans to run only one
stream. The advantage of the server-only approach is to
be simpler for both developer and user points of view: the
implementation is simpler because all the processing hap-
pens in the same place and the user has a single program to
configure (the server).

We choose the server-only approach for the current im-
plementation for its simplicity, however switching to the li-

brary approach is only a matter of integration effort: past-
ing server code into the library and adding the necessary
configuration file(s).

3.4 Formats and algorithms

3.4.1 16-bit vs. 24-bit precision

Samples using 16-bit precision give around 96dB dynamic
range4, which allows distinguishing light leaf rustling (ap-
prox. 10dB) superposed to jackhammer sound at 1m (ap-
prox. 100dB) [2]. From this standpoint, 16-bit precision
seems largely enough for audio processing.
Nevertheless, modern hardware supports 24-bit samples

and could theoretically handle 144dB dynamic range, which
is much larger than human ear dynamic range (approx.
120dB). However analog parts in audio hardware seldom
reach 144dB of dynamic range, and in most cases it’s closer
to 96dB than to 144dB. In other words, in most cases only 16
most significant bits of 24-bit samples are actually audible5,
least significant bits being hidden by noise and distortion.
On the other hand, 16-bit precision processing requires

32-bit arithmetic and 24-bit precision would require 48-bit
arithmetic. The sndio audio server is designed to be fast
even on slower 32-bit machines, like the zaurus port sup-
porting 416MHz Intel PXA27x ARM CPUs. That’s why,
given the little benefit of 24-bit precision, we use 16-bit pre-
cision.
Nevertheless, switching the implementation from 16-bit to

24-bit precision is almost as simple as changing the integer
type used to store samples.

3.4.2 Sample formats to support

There are plenty of sample formats designed for a wide range
of use-cases, some of which are far beyond the scope of
OpenBSD audio subsystem: providing interface to hard-
ware for music and desktop applications.

Integer (aka fixed point) samples These are the most
common formats for audio software and hardware. We sup-
port any precision between 1 and 32-bits, big or little endian,
signed or biased, padded or packed, LSB or MSB aligned (if
padded). These formats cover most hardware available in
2010.

µ-law and a-law samples These formats are used in tele-
phony; they are not linear, which means that programs have
to decode/encode samples before processing them. Thus all
programs using such formats can decode/encode them and
no support is required in the audio subsystem itself.

4dynamic range is defined by:

20 log
a

a0

where a is the maximum amplitude, and a0 is the minimum amplitude
of the signal. With 16-bit samples, the maximum amplitude is 216,
and the minimum amplitude is 1. The dynamic range is thus:

20 log 216 ≃ 96dB

5This statement is false for professional audio interfaces that may
support up to 120dB.

3



IEEE floating point Floating point samples, are actu-
ally used as fixed point numbers, since only the [−1 : 1]
range is used. Floats in this range can do nothing that inte-
gers can’t. They are used in software mainly because they
reduce development time, especially on x86 platforms where
floating point operations are cheap. Since such formats are
not strictly required, and conversions to/from integers is
trivial, we don’t support them.

Encrypted and compressed streams Audio data must
be decoded in order to be processed, we leave this task to
audio applications. However, there are audio interfaces with
“pass-through”mode allowing applications to send encoded
data to an external device. In this case the computer is not
involved, so there is no point in supporting such formats
in the audio subsystem: after all, computers are to process
data.

3.4.3 Choice of resampling algorithm

The following widespread approaches to resampling were
considered:

• zero order “hold” interpolation: adds a lot of noise but
implementation could be very fast.

• linear interpolation: adds much less noise and the im-
plementation still could be almost as fast as the zero
order method

• higher order interpolation: adds less noise but is more
CPU intensive and complicated to implement.

• sinc interpolation: gives the exact signal6. The com-
putation requires knowing all samples in advance (past
and future) and is very CPU intensive [3].

With all of above methods, the original signal’s spectrum
must be bounded by half of the sampling frequency. To
ensure this condition, a low-pass filter must be applied to
the signal.

In desktop applications like movie or music playback,
most of the resampling requirements are to convert 44.1kHz
samples to 48kHz. This involves signals that are already
filtered thus no filtering is required. Linear interpolation
produces noise, but it’s small because source and destina-
tion frequencies are not very different. The noise is seldom
perceptible with typical music or movie tracks.

Telephony applications use 8kHz sample frequency and
require resampling from/to 44.1kHz or 48kHz. Human voice
spectrum is naturally bounded around 4kHz, thus no filter-
ing is required either. Linear interpolation slightly degrades
the signal quality, but high fidelity is not a requirement for
telephony.

Music production requires that the recorded signal is not
degraded by computer processing, i.e., processing shall only
introduce errors smaller than hardware resolution7. This is

6Any continuous signal with a bounded spectrum can be sampled
and converted back to the original with no loss of information (Shanon
theorem). With this standpoint, resampling consists simply in calcu-
lating the continuous signal and resampling it to the new frequency.

7For instance, when processing signal recorded on hardware with
96dB dynamic range, the noise generated by the processing should be
such that the signal over noise ratio stays beyond 96dB.

very hard to achieve in real-time and musicians seems to
prefer resampling off-line. Furthermore, in music produc-
tion resampling can be avoided very easily by using the same
sample frequency in all recordings.
We use the linear interpolation method because it covers

all use-cases and is fast and simple.

3.4.4 Channel mapping algorithm

The audio subsystem often has to transmit a N -channel
stream to a M -channel device with M 6= N . For instance
stereo streams could be played on 8-channel devices.
The general approach, which is also easy to implement,

is to use a matrix mixer: each input channel is transmitted
to all output channels with user supplied volumes. How-
ever this would require to expose to the user N ×M knobs,
which is unpractical. Furthermore, in most common use-
cases where M 6= N , a lot of knobs would be always set
to zero. To keep things as simple as possible, sndio uses
channel ranges as follows:

• input and outputs have start and end channels numbers
selected by the user

• channel numbers common to input and output ranges
are transmitted with full volume the rest is ignored.

3.5 API design considerations

3.5.1 Stream vs. shared memory

Audio programs using stream semantics use system calls
like read and write to copy audio data from one address
space to another. Programs using shared memory semantics
save memory and CPU cycles. Unfortunately, neither kernel
drivers nor existing audio applications are easy to switch
from stream to shared memory semantics.
Both approaches are useful, depending on the context,

but for now we focus on stream semantics; the shared mem-
ory approach is planed for future versions of the framework.

3.5.2 Handling of full-duplex streams

In most full-duplex programs there’s a dependency between
the playback and recording direction, and full-duplex cannot
be simply considered as two independent streams. Indeed,
most of the time applications require playback and record-
ing direction to be in sync: the n-th written sample is played
exactly when the n-th read sample is recorded. The sndio

approach is to ensure this property at system level, bringing
a very simple interface to programs. This simplifies consid-
erably writing or porting audio software using full-duplex.

Applications that need independent playback and record-
ing streams, can simply open two streams instead of using
full-duplex.

3.5.3 Asynchronous events

Reading and writing samples doesn’t cover all needs of au-
dio applications. There are asynchronous events that pro-
grams require: for instance, to synchronize video on an au-
dio stream, the application must have access to the clock
ticks of the sound card. Asynchronous events could be ex-
posed through a callback mechanism or through a getter.

4



The getter approach was rejected because there’s no easy
way to poll for incoming events. Indeed, the poll system
call provides events only for when reading and writing is
possible (POLLIN and POLLOUT respectively). Furthermore,
events can occur during a blocking read or write, during
which they couldn’t be retrieved8.

4 Architecture and implementation

4.1 Overview

The sndio framework enhances and completes the kernel
audio and MIDI support, following above considerations.
The whole audio and MIDI subsystem is thus build around
three elements: kernel drivers, the aucat audio server and
the library-based API to access hardware devices and soft-
ware services in a uniform way.

4.1.1 Kernel drivers

Kernel audio and MIDI drivers expose hardware to user-
space processes through a character device. Only one pro-
cess may use a given device at a given time.

4.1.2 Audio server

The aucat program can behave as an audio server [11]. It
exposes “logical” subdevices that applications can use as
they were actual hardware devices. It acts as a transparent
layer between logical devices and hardware devices. It does
format conversions and resampling on the fly and allows
multiple applications to use the same device concurrently.

Each client has it’s own volume setting that can be con-
trolled through MIDI . This allows using a MIDI control
surface with motorized faders as a mixer. Volume settings
are persistent, meaning that if an application disconnects
from the server and connects back to it, it will get the same
volume setting. Volumes are reset if the server is restarted.
Multiple subdevices backed by the same hardware de-

vice can be defined. For instance, this allows splitting a
4-channel device in two stereo subdevices; this could allow
using headphones and speakers as different subdevices. Pa-
rameters like the maximum allowed volume are associated
to subdevices. Thus, defining subdevices could also allow
forcing applications to use a set of parameters.

Besides above features, the server can start multiple
streams synchronously. Once started, streams are main-
tained in sync, even if underruns/overrun occur. For in-
stance, this allows starting an audio player and an audio
recorder synchronously; the resulting recorded track will be
in sync with the played track. This mechanism is controlled
through MIDI and doesn’t not require modifying application
code. Only the appropriate MIDI software (or hardware) is
required.

The server can also expose a clock reference, allowing
MIDI software or hardware to be synchronized to an audio
stream, again without modifying the code. This mechanism
allows audio application running on OpenBSD to cooperate
with MIDI applications or external MIDI hardware.

8But probably programs using blocking I/O seldom need asyn-
chronous events.

The last two features – control and synchronization
through MIDI – are intended to allow multiple small pro-
grams to work together in order to accomplish a complex
task. This is a small step toward bringing Unix philosophy
in the audio domain.

4.1.3 MIDI server

MIDI is a unidirectional point-to-point serial link. A so
called thru box can be used to allow a single source (e.g.,
a master keyboard) to send data to multiple destinations
(e.g., synthesizers). To a certain extent, thru boxes are for
MIDI what hubs are for Ethernet.
The midicat program creates software thru boxes allow-

ing applications to send data to other applications [12].
Hardware MIDI ports can also be connected to thru boxes
as they were programs. This, in turn, allows a single device
to be shared by multiple programs.
Thru boxes and hardware MIDI ports are accessed by

programs in an uniform way. In other words the midicat

program emulates a hardware MIDI port with a physical
thru box connected to it.

4.1.4 Audio and MIDI access library

A library-based API, the libsndio, is provided to access
hardware devices and software services in an uniform way.
The API is very simple. It’s designed to help avoiding

programing mistakes. Besides its simplicity, it doesn’t re-
quire managing by hand synchronization of playback and
recording directions of full-duplex streams.

4.2 Kernel drivers and dependencies

Audio and MIDI hardware is exposed to user-space pro-
cesses through the corresponding kernel drivers. Only the
following subset of features offered by the audio driver are
used by the sndio framework:

• read and write system calls to receive recorded sam-
ples and send samples to play. The audio driver splits
inputs and outputs in blocks of equal size, but this fea-
ture is not required and is used only as an optimization.

• ioctl to get and set audio parameters, like the encod-
ing, the sample rate, the number of channels and the
block size. For full-duplex, we use always the same
parameters for playback and recording.

• ioctl to start and stop playback and/or recording. For
playback, first, the device is stopped, then few blocks of
samples are written, and finally, once there are enough
samples to play, the device is started.

• poll is used to check whether the device is readable or
writable. Certain audio APIs – including the OpenBSD
one – tend to use slightly modified poll semantics:
POLLIN and POLLOUT are set only if at least one block
can be read or written. Since we don’t depend on input
or output being block-based, any poll implementation
is usable.

• ioctl to fetch the number of samples processed by the
device. These counters are used for synchronization

5



purposes, and their value must be correct. We don’t
use their absolute value; we only use the difference be-
tween values returned by successive calls. Thus they
are allowed to overlap.

• ioctl to fetch the number of errors, i.e., the number
of samples inserted by underruns or dropped by over-
runs. In the OpenBSD implementation, the counter of
processed samples is not incremented during underruns
and overruns, thus we use the number of errors as a cor-
rection to the total number of samples. The number of
errors is allowed to overlap.

A very strong requirement is the number of processed sam-
ples to be correct (underrun and overrun corrections in-
cluded). The requirement of correct counters may seem
surprising, since if an API exposes such counters, then one
expects them to be correct. Nevertheless, the author noticed
they were not accurate in the initial OpenBSD implemen-
tation.

MIDI hardware is used as a simple serial port, and no
ioctl’s are used. We don’t use “cooked” interfaces like the
OSS-style sequencer device.

4.3 Server architecture

4.3.1 Data processing chain

The aucat audio server is build as a network of small pro-
cessing units running inside a single Unix process. Each
unit, called aproc structure, performs a simple task (like
resampling or mixing), which consists in processing audio
data on its input(s) and storing the result on it’s output(s)
for processing by its neighbor unit. Processing units are
interconnected by FIFOs, called abuf structures. Terminal
aproc structures are sockets, files or devices, and have ei-
ther only inputs (file writers) or only outputs (file readers).
Fig. 1, illustrates the data processing chain corresponding
to a typical configuration of the audio server.

To some extent, aproc structures can be considered as
execution threads, but they are much simpler than actual
machine threads: all of them use the same code structure
and none of them requires a stack. This allows optimizing
them a lot, avoiding system threads or alike. Any processing
unit sleeps while there’s no data to process and is waked up
when data is available on one of its inputs or when data can
be sent to one of its outputs. There’s no scheduler because
interactions are very simple; each processing unit calls its
neighbor when data is pushed to an output or pulled from
an input.

Buffers have two ends (reader and writer end), writing on
the buffer triggers its reader, and reading from the buffer
triggers its writer. This creates a cyclic dependency not
only between neighbor processing units, but across all the
network. At first glance such cycles are not triggered; fur-
thermore, each iteration involves data processing, and once
there’s no data to process anymore, the cycle will break by
itself. However the caller unit state is stored on the ma-
chine’s stack, and cyclic calls could make the process stack
grow indefinitely. Rather than dealing with cycles, which
would complicate the implementation, we preferred avoid-
ing the cyclic dependency. This is easy because the network

socket2

decode

mix
play

record

encode

demux

out

in
resamp.

resamp.

device

in

out

socket1

Figure 1: Network of processing units of a server instance:
processing units are represented as bullets, and FIFOs are
represented as lines. Two full-duplex sockets are connected
to the mixer and demultiplexer. Socket “1”uses format con-
versions and resampling on the fly while socket “2” uses the
server native parameters.

of processing units itself has no cycles, and thus all we have
to do is preventing units from calling their caller.
To each file descriptor is associated a “reader” terminal

aproc responsible for reading it and/or a writer terminal
aproc. The server polls on its file descriptors in a infinite
loop. Every time a descriptor becomes readable (writable),
its corresponding reader (writer) terminal aproc is invoked.
When there are no file descriptors to poll anymore, the
server exits.
Note that this framework for non-blocking processing is

not specific to audio. It can be used for anything else and
we’ll use it for MIDI . That’s why, the midicat binary is
simply a link to the aucat binary.

4.3.2 Server and non-server modes

Processing units are elementary bricks, and depending on
how they are connected, the aucat program could perform
different tasks. There are three main tasks we’re interested
in:

Server mode. At server startup, the audio device is
opened, and it’s corresponding writer and reader aproc

structures are created. They are attached to a mixer aproc
(for playback) and to a demultiplexer aproc (for recording)
respectively. The server starts listening for incoming con-
nections on its Unix domain socket, and the main loop can
start.
Every time a connection is accepted, reader and writer

terminal aproc structures are created for the correspond-
ing socket, and it’s inserted to the list of files to poll.
Reader and writer aproc structures are connected to the
mixer and/or the demultiplexer aproc structures. If con-

6



file4

decode

mix

resamp.
file1

file2

encode

demux

resamp.

file3

Figure 2: Network of processing units of an aucat instance
performing off-line conversions. Two files (1 and 2) are
mixed and the result is recored on two other files (3 and
4) using different parameters.

versions and/or resampling are required, then the corre-
sponding aproc structures are created and inserted in the
processing chain, as shown on fig. 1.

Player & recorder mode. One may notice that playing
data from a socket or from a regular file would be almost
the same. Only the reader and the writer implementation
changes. So, attaching regular files at startup costs nothing.
The aucat program has command line options to attach a
regular file to play or to record, and thus can be used as a
general purpose player/recorder.

Off-line conversion mode. Instead of opening and cre-
ating the device aproc structures, one can connect the mixer
output to the demultiplexer input, as shown on fig. 2. In
this mode aucat plays (and mixes) input files and records
the result on output files. It can be used as a general pur-
pose conversion, resampling, mixing and channel extraction
utility.

4.4 Latency control

One of the main objections against audio servers is the extra
latency they add. This an implementation problem and the
extra latency they add can be controlled and/or avoided, as
follows.

The latency is the time between a sample is produced and
the time it is played by the audio hardware. Audio samples
are buffered, and buffers are consumed at constant rate: the
sample rate. Thus the latency is:

latency =
buffered

rate

So controlling the latency is equivalent to controlling the
number of buffered samples which is easily achieved through
flow control.

The number of buffered samples includes any buffers in-
volved, including “hidden” buffers like the kernel buffers of
the Unix-domain connection and device driver buffers. It’s
very easy to calculate:

buffered = written− played

The number of samples played is exposed by the kernel
driver, while the number of written samples can be counted
easily. Thus, the maximum latency can be fixed by prevent-
ing the application from filling buffers beyond a fixed limit.
This mechanism is implemented inside the equivalent of the
write system call of the sndio library. The maximum la-
tency is set by the program at initialization, and the above
mechanism ensures that the program never goes past it.
The server mixes multiple streams, and the result of the

mixing is stored into a buffer for output to the device. This
buffer contributes to the total latency. But since it’s com-
mon to all clients, its size cannot be controlled by a single
client; it’s set at server startup. The size of this buffer is
thus the minimum buffering a program can request9. The
aucat program provides an option to set it.

4.5 Handling overruns and underruns

Underruns – causing sound stuttering – happen when the
client doesn’t provide data fast enough or when the server
doesn’t process it fast enough. This is mostly caused by
system load10, which cannot be completely avoided on a
non-realtime system.
When a client buffer underruns, the server inserts silence

to play in the stream. The effect of this is to shift the
clock exposed to the application by the amount of silence
inserted. This is not acceptable because the program may
use the clock to synchronize non-audio events to the audio
stream. There are two options:

• Drop the same amount of samples as the amount of si-
lence inserted. From the program point of view, there’s
a short transient sound quality degradation. For in-
stance, this behavior is suitable for a audio and MIDI
sequencer, where loosing the tempo transiently is not
acceptable. However if the underrun duration is long,
the program will not recover quickly; for instance a
program cannot be suspended and resumed with this
approach.

• Pause the clock by the amount of silence inserted. The
underrun can be possibly very long. However this ap-
proach is not suitable for music applications. Further-
more, multiple synchronous streams don’t underrun the
same way, their clock won’t pause the same way and in
turn they will go out of sync.

There’s no“best approach”, it depends on the program goal,
that’s why we let programs choose their underrun policy.
Besides the clock reference, the server must keep in sync

playback and recording directions of full-duplex streams. If
the playback direction underruns, then since silence is in-
serted; to keep the recording direction in sync, the same
amount of silence must be inserted in it. Similarly, if the
recording direction overruns, then since samples are dropped
from it; to keep the playback direction in sync, the same
amount of samples to play are dropped.
The server process itself may also underrun or overrun, if

the machine is busy. This is less likely to happen since it is
I/O bounded and the OpenBSD scheduler prioritizes such

9Actually, in the current implementation, kernel device buffers also
count in the minimum latency, but that will be fixed later.

10Or poor implementation.

7



processes. But the server uses the sndio interface to access
the actual audio device. In other words, aucat is “the client
of the device”, and thus its buffer underruns and overruns
will be handled by the lower layer, namely the device.

4.6 Sharing the dynamic range

Mixing streams means adding their samples. Obviously if
multiple 16-bit streams are added, the result cannot fit into
16-bit integers. A simple solution would be to take the
average of inputs instead of their sum, as follows:

y(t) =
1

N

N−1∑

i=0

xi(t)

where x0, . . . , xN−1 are input streams, and y the result of
the mix. This reduces the volume of each stream as follows:

xi(t) 7→
1

N
xi(t)

This is not a problem as long as N stays constant in time,
but that’s not the case. When a new stream is inserted,
i.e., the number of streams becomes N + 1, the i-th stream
changes:

1

N
xi(t) 7→

1

N + 1
xi(t)

its amplitude makes a relative11 step of:

N

N + 1

For small values of N the step is large (i.e., very audible)
and it converges to 1 (i.e., no step) for large values of N .
This is a problem because audio servers are mainly used
with one or two streams, so this option is not acceptable.

The other possibility would be to fix M , the maximum
number of streams and to systematically scale inputs by
1/M . But when there’s only one input stream (most of
the time), the dynamic range (thus quality) is unnecessar-
ily reduced, which is not acceptable either. Actually, this
depends on user requirements, so we used the following com-
promise: we let the user choose M the maximum expected
inputs and we scale inputs by 1/M if N < M , else we scale
them by 1/N . By default M = 1 to keep the full dynamic
range when there’s a single output, but if volume steps are
annoying, the user can pick a larger value of M .

4.7 MIDI control of the volume

We allow the volume of each client to be controlled individu-
ally. Rather than adding yet another API, and yet another
utility to control the volume, the aucat server exposes a
MIDI port and uses the standard MIDI volume controller
messages to adjust the volume. Besides the advantage of
being simple, this approach allows volume to be controlled
not only from common MIDI programs, but also from MIDI
hardware. For instance a control surface with motorized
faders can be used as it was a mixing console; such hardware
is a much more appropriate input device than the mouse
and keyboard of the computer. MIDI also allows saving

11We hear relative changes of the amplitude only: we can’t hear a
rustling near a jackhammer, but we easily hear it in a quiet room.

and restoring the mixer state into a standard MIDI file, or
to create volume automation by simply playing a file with
volume change events.
The drawback of this approach is that the user sitting be-

hind her/his control surface doesn’t know which fader cor-
responds to which application. Indeed, when a new appli-
cation connects to the server, a unused fader is allocated to
it but its name is not exposed yet12. To mitigate this prob-
lem, faders allocations are persistent: when an application
is started, it gets the same fader it used the last time it was
started. As a desirable side effect, the volume is restored
allowing the user to keep her/his per-application volume
settings persistent.

4.8 Synchronization of audio streams

Keeping in sync two audio applications means that the n-th
sample seen by one application is played or recorded simul-
taneously as the n-th sample seen by another application.
This property must be preserved across transient underruns
or overruns. Obviously this requires that applications start
simultaneously on the same hardware device13. From the
aucat server standpoint, this is easily achieved by atom-
ically connecting the application to the mixer and/or de-
multiplexer, see fig. 1. Streams that require to start syn-
chronously, are not started immediately; they are put in a
“ready to start” state, and once all streams are in this state,
they can be started atomically on user’s request.
Applications don’t need to explicitly request this feature.

It is enabled at server start-up on a per subdevice basis.
Typically, the user can create two subdevices for the same
hardware device: the default one and an extra device with
synchronization enabled. Depending on which subdevice
the application uses, it will be synchronized to other appli-
cations or not.
We use MIDI Machine Control (MMC) protocol to start

and stop groups of applications. This avoids defining a new
API and developing new tools. Most software or hardware
sequencers support this protocol, and it’s likely that the
user will need to control applications from such software or
hardware anyway. MIDI controllers often have start/stop
buttons too.
This implementation of MMC has three states:

• stopped – incoming streams are not actually started,
but put into a“ready to start”state. Even if all streams
are ready to start, they are not started until a MMC
start message is received.

• starting – incoming streams are not actually started,
but put into a “ready to start” state. Once all incoming
streams are ready to start, they are atomically started
and the server moves to the “running” state. If a MMC
stop message is received, then the server moves back to
the “stopped” state.

12This is being worked on.
13Different audio interfaces use different clock sources, which slightly

drift; the drift is accumulated over the time which sooner or later
makes devices go out of sync enough to be audible. That’s true even
for devices of the same model from the same vendor, using the same
electronic components. Audio interface clocks cannot be adjusted,
through certain professional interface can use external clock sources.
Nevertheless we focus on features working on any device.

8



• running – all streams are playing and/or recording syn-
chronously. If a MMC stop message is received, then
the server moves to the “stopped” state, but streams
continue until all applications explicitly stop.

4.9 MIDI to audio synchronization

Non-audio applications can be synchronized to audio appli-
cations through MIDI. Indeed the MIDI Time Code (MTC)
protocol allows multiple slaves to be synchronized to a mas-
ter. The master sends a “start” event, and then sends clock
ticks at fixed rate. Slaves use these clock ticks instead of
using the system timer. There’s no “stop” event, the master
just stops sending clock ticks.

In the sndio case, the master is the audio server, and
MIDI applications (or hardware) are its slaves. This is the
most interesting when an MTC slave can be the MMC mas-
ter, i.e., when a single MIDI application (or hardware) con-
trols audio streams and stays synchronized to them. This is
a key feature allowing multiple simple programs to be used
together to achieve complex tasks.

4.10 Overview of the API

The audio API [13, 14] to expose hardware devices or logi-
cal subdevices, mimics read and write systems calls when
possible. This eases porting code using OSS, Sun or ALSA
programming interfaces. The only significant difference vis-
ible by the user being worth mentioned is the device naming
scheme [10]. Since audio device names can refer to a hard-
ware device or to a subdevice exposed by aucat, which is
not located on the file system, we can’t use paths, so we use
the following naming scheme:

type:unit[.option]

Possible values of the type of the audio devices are “aucat”
and “sun” corresponding to aucat logical subdevices and
real hardware respectively. Possible values for MIDI devices
are “midithru”, “rmidi” and “aucat” corresponding to soft-
ware MIDI thru boxes, hardware MIDI ports and aucat

control port respectively. The unit number corresponds to
the character device minor number for hardware devices;
for audio or MIDI devices created with aucat or midicat it
corresponds to the server unit number specified on startup,
typically 0. The “option” parameter corresponds to the
subdevice name registered on server startup. The naming
scheme is similar to the one used by ALSA.

5 Using the framework

5.1 Porting and writing applications

The sndio API is simple, and there’s only one way to do one
thing. Writing the actual code of a new sndio back-end for a
simple application often takes less time than tweaking GNU
autotools to integrate it in the application. Writing sndio

back-ends is simplified further by the fact that certain tasks
like synchronization are handled by sndio itself and do not
require code in the application anymore. Less concepts, less
thinking, less code, less bugs.

To the author knowledge there’s no new code written pri-
marily for sndio outside OpenBSD; aucat itself uses sndio
to access the hardware though.

5.2 Setup examples

5.2.1 Audio server for desktop applications

This is the easiest use-case, there’s no configuration file,
neither specific options are required:

$ aucat -l

At this point multiple audio applications can use concur-
rently the default audio device, and any necessary conver-
sions are performed on the fly.

5.2.2 Multistreaming

Suppose the audio hardware has 4 (or more) channels: first
two wired to main speakers, and next two wired to head-
phones:

$ aucat -l -c 0:1 -s default -c 2:3 -s hp

At this stage applications can choose between two stereo
devices: the default one corresponding to speakers and an
extra device corresponding to headphones.

5.2.3 Creating a MIDI thru box

The following command:

$ midicat -l

creates a unconnected thru box. Applications can use it to
communicate as they were running on separate machines
connected with MIDI cables.
Furthermore, to share a MIDI keyboard across multiple

applications, its MIDI port can be subscribed when the thru
box is created:

$ midicat -l -f rmidi:4

where rmidi:4 is the port of the keyboard.

5.2.4 Making programs cooperate

This requires to create a subdevice with MMC/MTC en-
abled14:

$ aucat -l -r 48000 -z 480 -t slave

Applications using this device, will be synchronized to-
gether. Any MIDI sequencer can be configured to use
“aucat:0” as MIDI port. At this stage, pressing the “start”
button of the sequencer will start all audio applications si-
multaneously, and – most importantly – the MIDI sequencer
will stay in sync with all of them. Moving volume faders will
adjust volumes of individual streams.
This use-case is important because this is the only way

to use simple programs to record acoustic instruments (or
voice) on top of a MIDI accompaniment. Without aucat,
they can’t be synchronized, meaning that the recording can-
not be edited and replayed; the only option would be to use
a big monolithic application handling both audio recording
and MIDI playback.

14MTC uses 3 standard clock tick rates: 96Hz, 100Hz, 120Hz. By
using a sample rate of 48kHz and 480 samples block size, we ensure
that each block corresponds to a tick which gives maximum accuracy.

9



6 Conclusion and perspectives

6.1 Limitations and future work

There’s no plan for much enhancements, one of the main
project goals being to stay minimalistic, so it could be con-
sidered as almost complete. Nevertheless there’s place for a
lot of improvements:

First, more audio applications must be ported to sndio.
As long as not all applications used on OpenBSD are con-
verted to sndio, the kernel will have to expose the legacy
Sun audio interface. Keeping compatibility prevents from
simplifying kernel internals and forces us maintaining un-
necessarily complicated code in sndio internals.

MIDI control should be extended to expose application
names, and to control other parameters than the volume.
Furthermore, it’s not acceptable to have multiple mixer
APIs: the current kernel mixer API and the MIDI protocol
used by aucat. In the long term either both API will be
made uniform or one of them will be deleted. At fist glance
this might look like a complication of aucat, but in fact it
should be an overall simplification of the audio subsystem.
Finally, MIDI control is very simple but OpenBSD doesn’t
provide simple manipulation tools, which means that this
feature is reserved to users owning the bulky MIDI hard-
ware or using non-OpenBSD software. Simple programs
should be developed to make these features easily available
to anyone.

Given the data processing chain described in sec. 4.3.1,
its not very hard to implement an interface to snoop audio
streams and/or to inject data into them. This would allow
simple programs to be combined in a more flexible way to
achieve complex tasks. This would be one step further in
the Unix philosophy applied to audio. For instance this
would allow “recording what the device plays”, monitoring,
inserting effects, etc.

A longer term improvement would be to switch the ker-
nel, aucat and the API to use shared memory instead of
unnecessarily copying data. This requires reworking all de-
vice drivers, and the generic device independent kernel layer;
aucat will have to use another communication mechanism
than Unix-domain sockets.

6.2 Conclusion

We considered problems brought by audio support in desk-
top and music applications. Besides solving common prob-
lems of resampling, format conversions and mixing, the
sndio framework attempts to address the problem of syn-
chronization of audio and MIDI applications at system level,
allowing simple application to cooperate to perform a more
complex task.

Simplicity of the architecture, the design and the imple-
mentation were of first importance attempting to obtain a
lightweight and reliable tool.

Acknowledgments

Thanks to Jacob Meuser for his help on sndio, for his work
on kernel audio support, for the impressive amount of code
he ported to sndio and for pushing me to the right direction.

Thanks to all who donated machines and sound cards; to all
who ported and helped porting code to sndio; to all who
tested, reviewed and fixed the code. Thanks to Theo de
Raadt and people who made h2k8 possible, where certain
ideas come up.

References

[1] M. D. McIlroy, E. N. Pinson and B. A. Tague, Unix
time-sharing system forward, The Bell system technical
journal, 57 (1978)

[2] Wikipedia, Sound pressure (2009)
http://en.wikipedia.org/wiki/Sound_pressure

[3] J.O. Smith, Digital audio resampling (2009)
https://ccrma.stanford.edu/~jos/resample/

[4] NetBSD audio(9) manual, Interface between low and

high level audio drivers (2009)

[5] FreeBSD sound(4) manual, FreeBSD PCM audio de-

vice infrastructure (2009)

[6] Advanced Linux Sound Architecture project (2009)
http://alsa-project.org/

[7] PulseAudio home page (2009)
http://pulseaudio.org/

[8] L. Poettering, The PulseAudio sound server

linux.conf.au (2007)

[9] Paul Davis’ JACK presentation, Linux Audio Confer-
ence (2003)

[10] OpenBSD sndio(7) manual, Interface to audio and

MIDI (2009)

[11] OpenBSD aucat(1) manual, Audio server and stream

manipulation tool (2009)

[12] OpenBSD midicat(1) manual, MIDI server and ma-

nipulation tool (2009)

[13] OpenBSD sio_open(3) manual, Interface to bidirec-

tional audio streams (2009)

[14] OpenBSD mio_open(3) manual, Interface to MIDI

streams (2009)

10


