
sndio – OpenBSD audio & MIDI framework for

music and desktop applications

Alexandre Ratchov
alex@caoua.org

AsiaBSDCon 2010

13 march 2010

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 1 / 31



Outline

1 The problem to solve
Introduction
Purpose of the audio & MIDI subsystem
The problem to solve : goal

2 Design choices
Kernel vs. user-space implementation
Formats & algorithms to support

3 Architecture and implementation
Audio server
Synchronization & MIDI control

4 Examples

5 Conclusion

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 2 / 31



Introduction

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 3 / 31



What is digital audio?

Sequence of samples at fixed rate.

Played or recorded by the audio interface.

Full-duplex : n-th sample played while n-th sample recorded.

Consequences

Clock source (each sample is a clock tick).

Can be streamed (samples can be buffered).

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 4 / 31



What is MIDI?

Slow unidirectional serial link.

Transmits events to control audio (start, stop, volume).

Standardized in 1985, used by most professional audio equipment.

Real-time (i.e., events are processed immediately).

Consequences

Not a clock source, but can carry clock ticks.

Usable to control audio (start, stop, volume).

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 5 / 31



Purpose of the audio & MIDI subsystem

subsystem

audio

audio

audio audio
hardware

application

application

Fill the gap between the software and the hardware.
⇒ Format conversions, resampling.

Allow multiple programs to use the hardware concurrently.
⇒ Mixing, splitting hardware in subdevices.

Allow multiple programs to cooperate.
⇒ Synchronization, communication between programs.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 6 / 31



The problem to solve

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 7 / 31



Conversions & resampling

Application may not support hardware parameters.

Two programs may not support common parameters – at least one
of them requires conversions.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 8 / 31



Splitting hardware in subdevices & mixing

Using a 4-channel card as two independent stereo cards.

Example

Headphones (channels 0,1) for telephony.

Speakers (channels 2,3) for music.

Remark : mixing two streams is trivial at this stage.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 9 / 31



Synchronization and communication

Unix philosophy

“Write programs that do one thing and do it well. Write

programs to work together.”

— Doug McIlroy

To work together, audio programs must:

Be synchronized.

Communicate.

⇒ This is the role of audio and MIDI subsystems.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 10 / 31



Fault tolerance and correctness

Error recovery

◮ Effects of transient errors must be transient
e.g., a load burst may not cause a program to go out of sync.

Isolation

◮ Error in one program should break no other program.

Correctness

◮ Complicated architecture leads to bogus implementation.
◮ Complicated APIs are misused and lead to broken programs.
◮ Complicated tools are misused and lead to broken configurations.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 11 / 31



Design considerations

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 12 / 31



Performance vs. responsiveness

Performance

CPU time consumed – e.g., how many CPU cycles to compress a file.

Responsiveness

Latency in processing events – e.g., how long it takes to read a block
from disk.

For any audio subsystem:

The CPU usage is negligible.
⇒ Performance is not a concern.

Delays causes the sound to stutter.
⇒ Responsiveness is of first importance.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 13 / 31



User-space vs. kernel: extra latency?

What is latency?

The time between a program produces samples and the time they are
played.

Samples are buffered.

Buffers are consumed at fixed rate (sample rate).

⇒ The latency is the buffer usage.

No extra latency

Whether buffers are located in kernel or user space doesn’t matter for
the latency.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 14 / 31



User-space vs. kernel: stability?

Why do the sound stutter?

The machine is busy, the program (or the audio subsystem) don’t get
enough CPU to produce samples to play.

During a load burst:

User-space components may underrun.

Kernel components can’t underrun.

⇒ During a load burst, the application underruns, so we’re toast. No
matter whether the audio subsystem has user-space components.

Fixing stuttering

Write programs that don’t block.

Give enough CPU to programs.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 15 / 31



Sample formats choice

Integers (a.k.a fixed point numbers) – yes.
◮ Any combination of width, signedness, byte order and alignment.
◮ Used by most hardware.

IEEE floats used only in the [−1; 1] range – no.

◮ Equivalent to integers (fixed range).
◮ Trivial to convert from/to integers (FPU required).
◮ Mostly used to save development costs.

µ-law & a-law – no.

◮ Not usable for audio processing (not linear).
◮ Already handled by telephony applications.

Encrypted/compressed opaque formats – no.

◮ Not desirable (computers are to process data).
◮ Alternatives exist, i.e., the user is not locked.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 16 / 31



Architecture and implementation

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 17 / 31



Overview

Audio server

◮ Conversions, resampling, mixing, channel mapping.
◮ Subdevices – per-subdevice properties.
◮ MIDI controlled per-application volume.
◮ MIDI exposed clock source for non-audio applications.
◮ MIDI controlled synchronization between applications.

MIDI server – software MIDI thru box

◮ “hub” for MIDI data.
◮ Software or hardware can be connected to it.

Library-based programming interface

◮ Very simple.
◮ Mimics kernel APIs (read, write, ...).
◮ No need to handle synchronization and error recovery.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 18 / 31



Audio server architecture - processing chain

The audio server framework:

Elementary data processing units with:

◮ conversions, resampling (1 input, 1 output),
◮ mixing (N inputs, 1 output),
◮ channel extraction (1 input, N outputs),
◮ socket I/O, file I/O (either no inputs or no outputs).

Processing units are interconnected by FIFOs.

Event-driven framework for non-blocking I/O (no threads).

Server = network of elementary units

Server behavior is determined by:

the choice of processing units,

the way they are interconnected.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 19 / 31



Audio processing chain – server example

out

socket1

in
decode resamp.

mix

in

play

devicesocket2

out

demux
record

resamp.encode

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 20 / 31



Audio processing chain – non-server example

file1 and file2 are mixed/merged and the result is stored into file3

and file4 (of different formats).

file4

decode

mix

resamp.
file1

file2

encode

demux

resamp.

file3

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 21 / 31



Latency – flow control

Latency

latency =
buffered

rate
=

written− played

rate

⇒ Control the number of samples written.

Minimum theoretical latency:

Single application:
2 blocks (1 for the device + 1 for the application).

Server with independent applications:
1 extra block to allow 1 application to underrun without
disturbing others.

Current implementation allows 3-block latency (i.e., the minimum).

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 22 / 31



MIDI controlled per-application volume

Why MIDI control?

Standard since 1985.

Very simple to use and impliment.

Both software and hardware support MIDI.

Current limitations:

Which MIDI channel corresponds to which application?
Mapping should be exposed through the standard mixer interface.

No MIDI control utility in OpenBSD yet
one must use the bulky MIDI hardware or non-OpenBSD software.

. . . work in progress!

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 23 / 31



MIDI controlled synchronization

Start process

MMC “start” message blocks all streams.

Once all streams are ready, the server starts.

⇒ No need to modify application code.

preparing

app1

app2

app3

start signal actual start time

waiting

ready

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 24 / 31



Sound card clock exposed through MIDI

Why?

Allows MIDI-aware software (or hardware!) to be synchronized to
non-MIDI-aware audio programs.

Typical scenario:

The user manipulates a MIDI sequencer.

The sequencer controls audio streams.

The audio server sends feedback to the sequencer.

The sequencer stays in sync to audio streams.

⇒ Simple programs work together to achieve a complex task.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 25 / 31



Examples

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 26 / 31



Example: MIDI sequencer, audio player, audio recorder

volume

audio

audio

server

MIDI
sequencer

recorder
audio audio

hardware

player

MIDI
thru box

MIDI
keyboard

MIDI
sythesizer

start, stop, relocate... (MMC)

(MTC)
clock

start/stop (MMC)

Without the audio server and the MIDI thru box, the same task would
require a monolithic application.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 27 / 31



Integration in OpenBSD

Single binary – to start the server on the default device:

$ aucat -l

No configuration file, options are on the command line:
E.g., to create “spkr” and “hp” subdevices:

$ aucat -l -c 0:1 -s spkr -c 2:3 -s hp

Audio player, recorder and off-line conversion utility:

$ aucat -i file_to_play.wav

Devices can be either hardware (character devices) or software
subdevices (server connections) new naming scheme is required:

<type>:<unit>[.subdevice]

E.g., “aucat:0.hp”, “rmidi:5”, “midithru:0”, . . .

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 28 / 31



Demo: simple tools working together

clock (MTC), start/stop (MTC)

audio

audio

server
audio audio

hardware

player

player

sequencer
MIDI

(MMC)
start, stop, relocate

thru box
MIDI

start/stop (MMC)
volume

MIDI
thru box controller

MIDI

Playing two files simultaneously.

Controlling volume through MIDI.

Synchronizing a MIDI sequencer to record automation.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 29 / 31



Demo: simple tools working together

MIDI

audio

audio

server
audio audio

hardware

player

MIDIMIDI
thru box

volume
start/stop (MMC)

controller

player

sequencer
MIDI

(MMC)
start, stop, relocate

clock (MTC), start/stop (MMC)

thru box

Playing two files simultaneously.

Controlling volume through MIDI.

Synchronizing a MIDI sequencer to record automation.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 29 / 31



Demo: simple tools working together

player
audio

audio

server
audio audio

hardware

player

MIDI
thru box

MIDIMIDI
thru box

volume
start/stop (MMC)

MIDI
sequencer

clock (MTC), start/stop (MMC)

start, stop, relocate
(MMC)

controller

Playing two files simultaneously.

Controlling volume through MIDI.

Synchronizing a MIDI sequencer to record automation.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 29 / 31



Future work

Less is more — keep it simple!

Port more code to sndio, improve quality of existing code.

MIDI mixer — use a single mixer framework.

Record played streams (e.g., record from softsynths).

Avoid useless data copying — use shared memory.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 30 / 31



Conclusion

Very simple framework (hopefully!).

◮ User-space implementation.
◮ Single binary, no configuration file.

Stable and reliable by design.

◮ Fast and structured non-blocking framework.
◮ Strict latency control (theoretical minimum reached).
◮ Synchronization maintained after underruns.

Problems of desktop application addressed:

◮ Conversions, resampling, mixing, channel mapping, volume control.
◮ Subdevices – per-subdevice properties.

Problems of music applications addressed:

◮ MIDI controlled synchronization between applications.
◮ Software MIDI ports allowing applications to communicate.

A. Ratchov (AsiaBSDCon) OpenBSD audio and MIDI subsystem 13 march 2010 31 / 31


	The problem to solve
	Introduction
	Purpose of the audio & MIDI subsystem
	The problem to solve : goal

	Design choices
	Kernel vs. user-space implementation
	Formats & algorithms to support

	Architecture and implementation
	Audio server
	Synchronization & MIDI control

	Examples
	Conclusion

