vmd

Reyk Floter
reyk@openbsd.org

About vmd

* “vmd is a daemon responsible for the execution of
virtual machines (VMs) on a host.”
 vmd(8) interfaces with vimmm(4) in the kernel
* It handles the VM setup, vCPUs, exists, and device layer
 vmd(8) and vmctl(8) manage the VMs

* We want to provide complete functionality in base
e Ready to use, builtand designed for OpenBSD
* Focus on features that we need
* An alternative device layer could be provided by gemu

History of vmd

* Mike Larkin wrote vmm(4) and the initial vmd(8)

 vmd(8) was a simple but functional daemon
* One parent process, the VMs, and a simple vinmctl tool

* ltincludedthe implementation of a VIRTIO device layer
* Disks
* Network Interfaces
 Virtual CPUs (VCPUs)

* | turned vmd(8) into an “OpenBSD-style” daemon:
* Fully privilege-separated (privsep) process model
* Well-defined configuration grammar (/etc/vm.conf)
* Improved status and control tool (vmctl)

Opens: Lnpr iy
Vm d -diskS 'Pff’O'S\e
— —F(.IQS Vm @
| - devices]Cc)rk +VcPUs 02
CNP¥ IV P{?l\/ \{’Js unprv/ (/w
pledge Pleiae N pledae® V)| Tl
™Mo 0\ fm s / .
confred [« 752> Vma |22 Vimm p
N \ <
?o\cen:f \ Vry) i)
]\/mA.SOCk loads: ocH -
P\eJ € O

/M . CoNF/

):

N/

N "Wy

Rew\el

vmctl Control Tool

e vmctl is used to control and monitor vmd(8)
* Advanced configurationis done via vm.conf

* It implements sub-commands with options
* Unlike other ctls in OpenBSD, it does not use CLI-style

* Create a 4.5 Gigabyte disk image, disk.img:

vmctl create disk —s 4.5G

* Create a new VM with 512MB memory:

vmctl start “myvm” —m 512M —i 1 —d disk.img —k /bsd -c

* Terminate the VM "myvm”:

vmctl stop myvm

vm.cont Configuration File

* A well-defined and human-readable grammar

* No need for “getopt hell” and shell scripts calling vmctl
* Based on OpenBSD’s configuration parser, as used in

* pf, bgpd, relayd, httpd, ospfd, snmpd, ... and many others.
e Supports macro variables, comments and includes

* vmd(8) loads the vm.conf on boot or reload

openbsd="/bsd”

vm “myvm” {
memory 512M
interfaces 1
disk “/var/vmm/myvm.img”
Use the default
kernel Sopenbsd

vmm and the VM Processes

* “sandboxed” VMs using privsep and pledge

* New pledge “vmm” restricts allowed ioctlsto vmm(4)

* The vmm process communicates with the kernel
* |t forks and monitors the VM processes
* It receives devices (disks, kernel, NICs) from vmd

if (pledge(“stdio vmm recvfd proc”) == -1)
fatal(“pledge”);

* The VM processes represent each virtual machine:
e Each process runs with multiple threads, one per VCPU

* Handles exits and device I/O from vmm(4) in the kernel
if (pledge(“stdio vmm”) == -1)
fatal(“pledge”);

Future Work in vimd

* I'm waiting for Mike Larkin‘s interrupt controller
* Networking will be much easier when it is ready

* Change the network “interfaces” configuration
* Define virtual switches in vm.conf
e Assign VMs to virtual switches
* Integrate with upcoming work on switch(4) / switchd(8)

* Add support for VM templates and instances

e Support additional disk formats, eg. VMX export
* Enableit, enable full pledge

