

OpenBSD vmm/vmd Update

Mike Larkin

bhyvecon 2016
11 Mar 2016 – Tokyo, Japan

Agenda

● History and overview of vmm / vmd
● Current status
● Future plans
● (Reyk): Improvements to vmd / vmctl
● Q&A

VMM History

● People have wanted a native OpenBSD
hypervisor for some time

● One night, someone bought me a beer and
challenged me to build one ...

VMM History

● People have wanted a native OpenBSD
hypervisor for some time

● One night, someone bought me a beer and
challenged me to build one ...

– Isn't this how all these stories start?

VMM History

● Started coding at Brisbane 2015 hackathon

● Solo development through the summer and fall
– Thank OpenBSD Foundation for a grant to

support this work

● First commits late fall 2015

VMM History

● Why not just port bhyve?

● I Looked at this …

● Equal effort to port or rewrite
– Seemed to be different project goals anyway

– We wanted legacy support, i386, etc...

VMM Initial Design Goals

● “Make it work, make it right, make it fast”
● Support different processor models

– Support advanced processor features, but don't
require them

– Support i386

● Get OpenBSD on OpenBSD working first
– Then “generic virtio based VM”

– Work on other things later

VMM Overview

● VMM has several parts

● vmd(8)
– User mode daemon

– Makes requests to vmm(4) to run VMs

– Handles virtual device I/O

VMM Overview

● vmm(4)
– In-kernel part

– Executes guest VM code

– Transfers control to vmd(8) when device I/O or
interrupts occur

● vmctl(8)
– User mode control program

– Starts, stops, and controls VMs

VM Execution

● A user creates a VM
– “vmctl start ...”

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM Execution

● A user creates a VM
– “vmctl start ...”

● vmctl asks vmd to create
VM with requested devices

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM

disk

Net

vcpu

VM Execution

● vmd asks vmm to run the
VM (for each vcpu)

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM

disk

Net

vcpu

VM Execution

● vmd asks vmm to run the
VM (for each vcpu)

● vmm runs the vcpu until
help required (exit)

– Device I/O

– Memory allocation

– Interrupt

– Etc...

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM

disk

Net

vcpu

vcpu

VM Execution

● Control returns to vmd as
needed

– Device I/O (Disk)

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM

disk

Net

vcpu

vcpu

VM Execution

● Control returns to vmd as
needed

– Device I/O (Network)

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM

disk

Net

vcpu

vcpu

VM Execution

● Control returns to vmd as
needed

– Device I/O

● vmd performs the I/O
operation

– Repeat vcpu launch ...
OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM

disk

Net

vcpu

vcpu

VM Execution

● Control returns to vmd as
needed

– Prohibited operations

– VM termination

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)

VM

disk

Net

vcpu

vcpu

Current Status

● Device model
– Serial conosle

– virtio(4) devices
● vio(4) for networking
● vioblk(4) for disks

– Platform devices (legacy devices) as needed

Current Status

● VM compatibility
– Initial focus on amd64 OpenBSD guests

– vmd(8)'s boot loader can load arbitrary ELF
kernels

– I loaded both FreeBSD and NetBSD (not
currently a personal priority)

Current Status

● After initial commit, many other developers
became involved

– Some working on vmm

– Some working on vmd/vmctl

● My initial vmd/vmctl code sucked

Current Status

● After initial commit, many other developers
became involved

– Some working on vmm

– Some working on vmd/vmctl

● My initial vmd/vmctl code sucked
– So Reyk stepped in to fix things

Current Status

● After initial commit, many other developers
became involved

– Some working on vmm

– Some working on vmd/vmctl

● My initial vmd/vmctl code sucked
– So Reyk stepped in to fix things

– I probably owe him a beer

Future Plans

● vmm(4) features
– Nested VMX

– i386

– AMD SVM
● Then someone will ask for nested SVM …

● All these are implemented to some degree,
rotting in my tree

Future Plans

● VM templates
– vmctl run firefox

● Boots firefox in a VM
● Filesystem passthrough with whitelist

– Eg, to let firefox access host ~/.mozilla
● Forwarded display, isolated network

● VM migration
– vmctl send “myvm” | ssh mlarkin@foo.com vmctl receive

mailto:mlarkin@foo.com

Future Plans

● One developer is working on qemu interface
– For legacy OS support

● One developer is working on making vmm look
like KVM

– Easier interfacing with existing tools (also gives
another route to qemu interface)

Finally ...

● If you want to get involved…
– ... find something interesting (or ask what needs

to be done)

– … implement it

– … send a diff

Questions?

● Any questions?

Thank You

Mike Larkin
mlarkin@openbsd.org

@mlarkin2012

mailto:mlarkin@openbsd.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

