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Agenda

● History and overview of vmm / vmd
● Current status
● Future plans
● (Reyk): Improvements to vmd / vmctl
● Q&A



  

VMM History

● People have wanted a native OpenBSD 
hypervisor for some time

● One night, someone bought me a beer and 
challenged me to build one ...



  

VMM History

● People have wanted a native OpenBSD 
hypervisor for some time

● One night, someone bought me a beer and 
challenged me to build one ...

– Isn't this how all these stories start?



  

VMM History

● Started coding at Brisbane 2015 hackathon

● Solo development through the summer and fall
– Thank OpenBSD Foundation for a grant to 

support this work

● First commits late fall 2015



  

VMM History

● Why not just port bhyve?

● I Looked at this …

● Equal effort to port or rewrite
– Seemed to be different project goals anyway

– We wanted legacy support, i386, etc...



  

VMM Initial Design Goals

● “Make it work, make it right, make it fast”
● Support different processor models

– Support advanced processor features, but don't 
require them

– Support i386

● Get OpenBSD on OpenBSD working first
– Then “generic virtio based VM”

– Work on other things later



  

VMM Overview

● VMM has several parts

● vmd(8)
– User mode daemon

– Makes requests to vmm(4) to run VMs

– Handles virtual device I/O



  

VMM Overview

● vmm(4)
– In-kernel part

– Executes guest VM code

– Transfers control to vmd(8) when device I/O or 
interrupts occur

● vmctl(8)
– User mode control program

– Starts, stops, and controls VMs



  

VM Execution

● A user creates a VM
– “vmctl start ...”

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)



  

VM Execution

● A user creates a VM
– “vmctl start ...”

● vmctl asks vmd to create 
VM with requested devices

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)
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disk
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VM Execution

● vmd asks vmm to run the 
VM (for each vcpu)

OpenBSD Kernel w/vmm(4)
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VM Execution

● vmd asks vmm to run the 
VM (for each vcpu)

● vmm runs the vcpu until 
help required (exit)

– Device I/O

– Memory allocation

– Interrupt

– Etc...

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)
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Net

vcpu
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VM Execution

● Control returns to vmd as 
needed

– Device I/O (Disk)

OpenBSD Kernel w/vmm(4)
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VM Execution

● Control returns to vmd as 
needed

– Device I/O (Network)

OpenBSD Kernel w/vmm(4)
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VM Execution

● Control returns to vmd as 
needed

– Device I/O

● vmd performs the  I/O 
operation

– Repeat vcpu launch ...
OpenBSD Kernel w/vmm(4)
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VM Execution

● Control returns to vmd as 
needed

– Prohibited operations

– VM termination

OpenBSD Kernel w/vmm(4)

vmctl(8)

vmd(8)
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Net
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Current Status

● Device model
– Serial conosle

– virtio(4) devices
● vio(4) for networking
● vioblk(4) for disks

– Platform devices (legacy devices) as needed



  

Current Status

● VM compatibility
– Initial focus on amd64 OpenBSD guests

– vmd(8)'s boot loader can load arbitrary ELF 
kernels

– I loaded both FreeBSD and NetBSD (not 
currently a personal priority)



  

Current Status

● After initial commit, many other developers 
became involved

– Some working on vmm

– Some working on vmd/vmctl

● My initial vmd/vmctl code sucked
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Current Status

● After initial commit, many other developers 
became involved

– Some working on vmm

– Some working on vmd/vmctl

● My initial vmd/vmctl code sucked
– So Reyk stepped in to fix things

– I probably owe him a beer



  

Future Plans

● vmm(4) features
– Nested VMX

– i386

– AMD SVM
● Then someone will ask for nested SVM  …

● All these are implemented to some degree, 
rotting in my tree



  

Future Plans

● VM templates
– vmctl run firefox

● Boots firefox in a VM
● Filesystem passthrough with whitelist

– Eg, to let firefox access host ~/.mozilla
● Forwarded display, isolated network

● VM migration
– vmctl send “myvm” | ssh mlarkin@foo.com vmctl receive

mailto:mlarkin@foo.com


  

Future Plans

● One developer is working on qemu interface
– For legacy OS support

● One developer is working on making vmm look 
like KVM

– Easier interfacing with existing tools (also gives 
another route to qemu interface)



  

Finally ...

● If you want to get involved…
– ... find something interesting (or ask what needs 

to be done)

– … implement it

– … send a diff



  

Questions?

● Any questions?



  

Thank You

Mike Larkin
mlarkin@openbsd.org

@mlarkin2012

mailto:mlarkin@openbsd.org
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