
Hardening Emulated Devices
in OpenBSD’s vmd(8) Hypervisor

Dave Voutila
OpenBSD

dv@openbsd.org

Abstract—The 2010s brought commoditization of hardware-
assisted virtualization as now most consumer operating systems
and computers ship with both support in hardware as well
as Type-2 hypervisors. With hypervisors comes the need for
emulated devices to provide virtual machines interfaces to the
outside world, including network cards, disk controllers, and
even hardware random number generators. However, hypervisors
are still software programs and consequently subject to buffer
overflow and stack smashing attacks like any other. Previous
research has shown a common weak point in hypervisors to be
these very emulated devices where exploits enable “guest to host
escapes”, the most famous being an exploit of an emulated floppy
disk controller.

This paper provides an experimental approach with
OpenBSD’s Type-2 hypervisor (vmd) for isolating emulated
devices using the privilege dropping and separation capabilities
available in OpenBSD 7.2 to mitigate techniques for turning
memory bugs into guest-to-host hypervisor escapes.

Index Terms—OpenBSD, virtualization, security

I. INTRODUCTION

One of the earliest documented guest-to-host escapes was
made possible by a buffer overflow of an emulated video card
in the Xen hypervisor (CVE-2008-1943 [1]). Since then, every
major hypervisor whether open-source or commercial, has had
something in common: a buffer overflow or unitialized mem-
ory bug in an emulated device allowing for exploitation by a
malicious guest operating system. This raises two concerns:

• the attractiveness of attacking emulated devices in a
hypervisor,

• the accessibility of modern techniques to exploit these
memory bugs when found.

A. Emulated Devices as Targets in Hypervisors

Like with real computers, devices form the interface
between a virtual machine and the outside world. While
hardware-assisted virtualization allow CPU-intensive tasks to
achieve bare-metal speeds, at some point the guest will need
to perform I/O whether sending a network packet or writing
a block to persistent storage. Given I/O becomes a noticeable
performance bottleneck in virtualized systems, hypervisor au-
thors often optimize in multiple ways:

• emulate a device in the host kernel to reduce overhead
• emulate all devices in the same process via threads
• pass-through access to a real, physical device

As a result, emulated devices often require or evolve to
acquire elevated permissions and capabilities, making them a
high-value target for an attacker.

The high-valued nature isn’t the only problem: emulated
devices must work with guest device drivers. Hypervisor
authors must create virtual hardware from software and, while
there exist virtualization-specific specifications like VirtIO [2],
the nature of I/O requires moving guest-supplied data back and
forth. A memory bug easily becomes “remotely” triggerable
by a guest device driver or a even a packet coming in to the
host from outside.

Given the above, it should come as little surprise that almost
all published virtual machine “escapes” [3] have been as the
result of exploiting emulated devices!

B. Return-Oriented Programming

At the same time researchers began to find the first guest-
to-host exploits in hypervisors, other researchers found novel
ways to go beyond simple code-injection techniques and use
a program’s code against itself.

Return-Oriented Programming (ROP) [3] provides a man-
ner to defeat W⊕X mitigations, commonplace in operating
systems with the support of a hardware “no-execute” (NX)
page protection bit. ROP attacks use either the program
itself or runtime libraries like libc to execute arbitrary code
assembled by finding and leveraging specificly useful machine
instructions called “gadgets.” These gadgets, when executed
in a particular order (called a “chain”), allow an attacker to
achieve arbitrary code execution.

Multiple approaches exist to help prevent a successful ROP
attack, including Adress Space Randomization (ASLR) and
Control Flow Integrity (CFI) [4].

C. Blind Return-Oriented Programming

In 2014, Bittau et. al. showcased an evolution of ROP, called
“Blind Return-Oriented Programming” (BROP) [5], designed
to overcome ASLR techniques and remotely exploit stack
buffer overflows through information leakage. The authors’
techniques of “stack reading” to defeat ASLR and remotely
generate ROP chains (sequences of gadgets) to achieve arbi-
trary code execution emphasized the severity of stack or heap
overflows in programs: if it’s remotely accessible and doesn’t
re-randomize itself on a restart, any remotely triggerable stack
buffer overflow provides a BROP attack vector.

How do these concerns apply to hypervisors? While there
are no currently known successful BROP-based attacks on
hypervisors, the concept of information leakage still applies.
If an attacker can use a vulnerable emulated device to leak
the hypervisor code into guest memory (assuming no program
crash), it’s possible to perform a ROP analysis.

II. DEFENSIVE CONCERNS OF THE IDEAL HYPERVISOR

Considering the state-of-the-art of ROP-based attacks, what
would the “ideal” hypervisor consider? BROP has shown it’s
important to consider the following:

1) Information leakage allows for defeating ASLR.
2) ROP gadgets allow assembling any needed system call.
3) System calls allow lateral movement to take over a host.

The ideal hypervisor would maximize the complexity of
defeating ASLR. While the trivial approach would be to
simply not respawn after a crash (which isn’t a common
hypervisor trait anways), one can propose:

Ideal Trait 1 An information leak in one vulnerable compo-
nent of a hypervisor must not inform on other components of
the hypervisor.

And what about ROP gadgets? They’re impossible to com-
pletely remove from the x86 architecture, so while they can
be minimized by changes to compilers, in the ideal case our
hypervisor would minimize their value:

Ideal Trait 2 Compromising a component of a hypervisor
must not allow for compromising other components of the
hypervisor, i.e. a vulnerable network device must not allow
for compromising other devices.

Lastly, keeping with the principle of least privilege:

Ideal Trait 3 Escaping a guest, via any means, must force the
attacker to then exploit the hypervisor itself to gain control of
the host.

While we can harden emulated devices, the difficulty posed
to the attacker should stay constant or increase even if they
manage to take control of an emulated device.

III. OPENBSD’S HYPERVISOR

Available since OpenBSD 5.9, released on 29 March, 2016,
OpenBSD’s hypervisor consists of three parts:

• vmm(4) - the in-kernel virtual machine monitor
• vmd(8) - the userland virtual machine daemon
• vmctl(8) - a utility for interacting with vmd

This paper focuses primarily on vmd(8) because it pro-
vides the emulated devices of interest (e.g. VirtIO network
devices).

Fig. 1. vmd(8)’s first priv-sep design.

Fig. 2. vmd(8)’s priv-sep design as of OpenBSD 7.2.

A. Privilege Separation in vmd

While not in the original release of vmd, Reyk Floeter
committed [6] a redesign to implement a fork+exec model
like the one already used in other OpenBSD daemons such as
httpd(8).

Shortly thereafter, Reyk added [7] an additional “priv” pro-
cess intended to run as root and facilitate privledged operations
such as naming host-side tap(4) interfaces to match the
name of the vm.

B. Privilege Dropping in vmd

In addition to separating vmd into multiple processes with
dedicated responsibilities, it additionally uses methods to
reduce the privilges of each process. As of OpenBSD 7.2,
vmd incorporates three (3) primary mechanisms for dropping
privilege:

1) setresuid(2)/setresgid(2) - for changing
uid/gid

2) chroot(2) - for isolating file system access

TABLE I
EXISTING PRIVILEGE DROPPING IN VMD(8)

process uid/gid chroot pledge(s)
parent root $PWD stdio rpath wpath proc

tty recvfd sendfd getpw
chown fattr flock

control vmd $PWD stdio unix recvfd sendfd
agentx vmd / stdio recvfd unix
priv root $PWD –
vmm vmd / stdio vmm sendfd recvfd

proc
vm vmd $PWD stdio vmm recvfd

3) pledge(2) - for removing system call access

In short, the syscalls as early as feasible during program
start to adjust privledges to those in the Table I.

C. Existing Weaknesses in vmd

Even with the existing PrivSep design and mitigations, the
following remains true for vmd as of OpenBSD 7.2:

1) All devices are emulated in the same guest vm process.
2) Guest vm process creation relies only on fork(2),

meaning address layouts are the same across guest vms.

Given our proposed ideal traits in section II, there are
identifiable gaps in the current design of vmd with respect
to device emulation. Consequently, a compromised device in
one machine exposes all guests under vmd to risk.

IV. HARDENING A VMD DEVICE

We’ll use the “ideal traits” to design our hardening method-
ology. Implementing each trait requires using multiple capa-
bilities of OpenBSD. Let’s look at them in order.

A. Maximizing Randomness

The first step in implementing Trait 1 is solving for the 2nd
weakness outlined above.

To make each guest have their own address space layout,
it should be as simple as performing the exec(2) part
of “fork+exec,” right? vmd poses some challenges towards
implementation because of its existing PrivSep design!

Firstly, the vmm process responsible for spawning new vm
processes doesn’t utilize the “exec” pledge(2) promise.
This means the execvp(2) syscall is prohibited. But that’s
an easy change; just add the promise, right?

Unfortunately, because vmm utilizes chroot(2), it won’t
have access to the vmd(8) executable in the file system.
Luckily, we can leverage unveil(2) and the known path
to the vmd executable to approximate the same outcome of
minimizing filesystem access.

As a consequence, we need to make the following changes:

1) Remove vmm’s chroot(2).

Fig. 3. vmd(8)’s priv-sep after adding fork+exec for vm’s.

2) unveil(2) /usr/sbin/vmd in executable mode.
3) Add “exec” to vmm’s promises.
4) Set the child-side of the socketpair(2) file descrip-

tors to not close-on-exec.
5) Implement message passing to bootstrap the new vm

process since we can no longer rely on existing global
variables.

The last part (message passing) requires the most effort. For
now, the following approach is used:

1) Add a new getopt(3) argument to indicate we’re
launching a new vm-based process and pass that argu-
ment (-V) when exec’ing.

2) Pass the file descriptor integer for the child-side of the
socketpair(2).

3) Use synchronous message passing to send the child vm
process its configuration values.

At this point, the privledge separation diagram looks like:

B. Minimizing the Impact – Isolating a Device

vmd has had its share of security errata and, like most
hypervisors, most have been related to emulating a network
device. How can we isolate devices?

The most obvious approach is to simply make each device
its own process, each with its own address space like we did
with the vm process in section IV-A. Ultimately, we want to
achieve a design illustrated in figure IV-B.

For this, we’ll take one of the more complicated and higher
value targets of the emulated devices in vmd: the emulated
vio(4) network device. This poses multiple challenges.

1) Sharing Guest Physical Memory: The first challenge,
and perhaps the most critical, is that the device needs the
ability to read and write directly to guest memory. The guest
memory was already allocated and mapped by the vm process,
so we need to share the pages between vm process and device
process.

This change primarily occurs in the vm process. When
allocating the memory for the backing guest memory ranges,
we can use shm_mkstemp(3) to create a temporary shared

Fig. 4. Isolating multiple VirtIO nics for a vm.

memory object to use when calling mmap(2). Since the
mapping is no longer anonymous, we can make sure that the
file descriptor is not set to close-on-exec. All that’s left is to
incorporate the file descriptor into a configuration message to
send to the device after execvp(2).

2) Bootstrapping the Device Process: We need to update
the vm process to do the fork(2)/execvp(2) dance.
That’s easy enough as previously we added the -V flag and
can use the same pattern of passing configuration data after
re-exec. The configuration message needs to contain the value
of the shared memory file descriptor and the already open
tap(4) file descriptor.

Like before, we establish a synchronous communication
channel and pass the file descriptor value via the program
arguments so the new device process can start communicating
and receiving the configuration data.

However, unlike the vmm-to-vm communication channel, we
need an additional asynchronous one to allow for event-based
communication.

3) Communicating with the Device: The vm process has
two threads that may need to communicate with the device:
the vcpu thread that will emulate IN/OUT instructions to the
PCI registers and the event loop thread handling asynchronous
events.

For the vcpu thread, we need a synchronous channel. When
emulating a PCI register read, the vcpu will expect a response
immediately. (Writes are trivial as no response is needed.)
Since this is the vcpu thread, it cannot leverage any async
scheduling of imsg’s since it doesn’t own the event(3)
event base lest it corrupt existing events!

For the event threads, we need an asynchronous channel.
One message in particular is relayed from the vmm process to
the vm process: an update to the host-side MAC. (This occurs
at some time post vm-launch.) Other async messages include
pausing and unpausing the device when the vm is being paused
or unpaused.

In either case, imsg functions are used to guarantee atomic
delivery.

4) Communicating with the Network: A functioning
vio(4) device requires the following for operation:

• Two virtqueues (TX and RX).
• An open file descriptor to the host’s tap(4) device.

The same mechanisms already in place for using an event
loop for reading off the tap(4) can be reused in this case.
The only difference is now when the device needs to assert or
deassert the IRQ, it needs to broadcast a message to the vm
process using the asynchronous channel.

C. Escaping into a Void – Reducing the Device Surface Area

If all else fails, escaping a device should leave the attacker
needing to now find additional exploits to elevate privilege.
Let’s assume a bug in the vio(4) device allows a guest-to-
host escape. What are the next potential escalation paths an
attacker will want to chain together to get root on the host?

1) Securing the File System: One trivial target is the
filesystem, either to exfiltrate sensitive data (like private keys),
exploit race conditions, or trick another program to execute
something. The device isn’t running as root, so we can’t
simply chroot(2) to /var/empty, but we can leverage
unveil(2) and achieve a similar result.

D. Removing System Calls

We want to prevent lateral movement and that means
preventing system calls. Thankfully, this is trivial with
pledge(2) and, moreover, we can further reduce privileges.
Using just the “stdio” promise, we reduce to just a minimal
subset of syscalls we need for reading and writing our open
file descriptors and managing our events.

This does mean that an attacker escaping the guest and
controlling the device process can read(2)/write(2) but the
possible targets are limited to the existing file descriptors
(communication channels with the vm and the host tap(4)).
However, no new sockets can be created nor can any files in
the file system be opened.

Any privilege escalation will need to exploit a smaller
surface area than exposed by the vm process and need to rely
on kernel bugs, most likely in this limited area.

V. SECURITY! BUT AT WHAT COST?

If Meltdown and Spectre taught the average user anything
it’s that security often comes at the price of performance. What
impact do the proposed architectural changes to vmd have on
things like network performance from the point of view of the
guest?

TABLE II
IPERF3 PERFORMANCE TEST

Host Guest Bitrate
(Gbps)

∆ (%)

-current OpenBSD 7.2 0.86
prototype OpenBSD 7.2 1.40 63%
-current Alpine Linux 3.17 1.30
prototype Alpine Linux 3.17 1.14 -14%

A. A Simple TCP Benchmark

While this research doesn’t aim to perform a full perfor-
mance evaluation at this time, one known area of poor network
performance is when using a TCP performance test program
and having the guest act as the client. Anecdotally, this often
shows noticeably worse performance than the reverse (having
the host act as the client).

Utilizing a Lenovo X1 Carbon laptop (10th generation
model) with the an Intel i7-1270P CPU, the observations in
Table II were observed using iperf3(1) from (chosen as
it’s available on both OpenBSD and Alpine). Both guests were
allocated 8 GiB of memory and the recorded result is the
best average throughput reported across 3 runs of 60 second
duration.

B. Interpretation of Results

Since vmd(8) does not support multi-processor guests, it
isn’t too surprising that we can see a performance improve-
ment from this design for OpenBSD guests. As a consequence
of the message-based approach, some of the network IO
can occur without blocking either the vcpu thread or event
handling thread (responsible for the libevent event handler)
in the main vm process. For instance, in OpenBSD 7.2, writes
by a vcpu to an emulated PCI register will block while the
device emulates them and potentially injects an interrupt,
resulting in a syscall via ioctl(2).

The potential performance regression in Alpine Linux is not
substantial, but does warrant further investigation.

VI. FUTURE WORK AND CONSIDERATIONS

The prototype has rough edges, specifically around ro-
bustness of lifecycle management. Improving child process
handling in the event of program termination as well as
preventing possible messaging deadlocks at launch would
improve viability.

While the performance improvement of networking
throughput in OpenBSD guests was a pleasant surprise, the
lack of improvement in Alpine Linux guests shows there’s
still potential. The single thread design of the device process is
easier to debug, but prevents simultaneous transmit and receive
processing.

In addition, relying on syscalls and trips through the kernel
to communicate adds extra overhead. While unmeasured at this
point, if it’s deemed a bottleneck then exploring messaging via

a shared page of memory and newer Intel process features like
TPAUSE instructions might reduce latency.

Lastly, extending the design to VirtIO block devices would
be ideal.

VII. CONCLUSIONS

OpenBSD contains all the necessary tools for implementing
an advanced hypervisor design that improves security without
complicating user experience. While this paper doesn’t explore
existing approaches from systems such as QEMU, the idea of
isolating devices has been attempted by multiple hypervisors,
but has yet to become the default behavior.

The outlined design and approach for vmd(8) presents
a viable way to bring the isolation needed to take another
step towards the “ideal hypervisor” without the expense of
operator or user complexity. This approach keeps with the
spirit and design of pledge(2) and unveil(2): it’s the
developer’s responsibility to study and improve the program,
not the user’s.

ACKNOWLEDGMENT

The author would like to thank the AsiaBSDCon program
committee for the opportunity to present on this research.
Many thanks also to Mike Larkin (mlarkin@) for his guid-
ance and mentorship while hacking on vmd(8). Lastly, the
author’s spouse deserves immense credit for supporting the
time and obsession required for attempting this research.

REFERENCES

[1] Red Hat Bugzilla, https://bugzilla.redhat.com/show bug.cgi?id=443078,
accessed December 2023.

[2] Virtual I/O Device (VIRTIO) Version 1.1. Edited by Michael S. Tsirkin
and Cornelia Huck, 11 April 2019, OASIS Committee Specification 01,
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html.

[3] Wikipedia, “Virtual machine escape”, https://en.wikipedia.org/wiki/
Virtual machine escape#Previous known vulnerabilities, retrieved 26
December, 2022.

[4] V. Pappas, “Defending against Return-Oriented Programming”,
Columbia University, 2015.

[5] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86)”, Proceedings of the CCS
2007, ACM Press, pp. 552-61, 2007.

[6] OpenBSD GitHub mirror, https://github.com/openbsd/src/commit/
bcc679a146056243a2fd52a28182621f893fed4b

[7] OpenBSD GitHub mirror, https://github.com/openbsd/src/commit/
5921535c0be28fd3cf226c9c6a0aa8bb71699acb

https://bugzilla.redhat.com/show_bug.cgi?id=443078
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://en.wikipedia.org/wiki/Virtual_machine_escape#Previous_known_vulnerabilities
https://en.wikipedia.org/wiki/Virtual_machine_escape#Previous_known_vulnerabilities
https://github.com/openbsd/src/commit/bcc679a146056243a2fd52a28182621f893fed4b
https://github.com/openbsd/src/commit/bcc679a146056243a2fd52a28182621f893fed4b
https://github.com/openbsd/src/commit/5921535c0be28fd3cf226c9c6a0aa8bb71699acb
https://github.com/openbsd/src/commit/5921535c0be28fd3cf226c9c6a0aa8bb71699acb

	Introduction
	Emulated Devices as Targets in Hypervisors
	Return-Oriented Programming
	Blind Return-Oriented Programming

	Defensive Concerns of the Ideal Hypervisor
	OpenBSD's Hypervisor
	Privilege Separation in vmd
	Privilege Dropping in vmd
	Existing Weaknesses in vmd

	Hardening a vmd Device
	Maximizing Randomness
	Minimizing the Impact – Isolating a Device
	Sharing Guest Physical Memory
	Bootstrapping the Device Process
	Communicating with the Device
	Communicating with the Network

	Escaping into a Void – Reducing the Device Surface Area
	Securing the File System

	Removing System Calls

	Security! But at what cost?
	A Simple TCP Benchmark
	Interpretation of Results

	Future Work and Considerations
	Conclusions
	References

