
A Future�Adaptable Password Scheme

Niels Provos and David Mazi�eres

fprovos�dmg�openbsd�org
The OpenBSD Project

Abstract

Many authentication schemes depend on secret
passwords� Unfortunately� the length and ran�
domness of user�chosen passwords remain �xed
over time� In contrast� hardware improvements
constantly give attackers increasing computational
power� As a result� password schemes such as the
traditional UNIX user�authentication system are
failing with time�

This paper discusses ways of building systems in
which password security keeps up with hardware
speeds� We formalize the properties desirable in a
good password system� and show that the compu�
tational cost of any secure password scheme must
increase as hardware improves� We present two al�
gorithms with adaptable cost�eksblow�sh� a block
cipher with a purposefully expensive key schedule�
and bcrypt� a related hash function� Failing a ma�
jor breakthrough in complexity theory� these al�
gorithms should allow password�based systems to
adapt to hardware improvements and remain secure
well into the future�

� Introduction

As microprocessors grow faster� so does the speed
of cryptographic software� Fast cryptography opens
many opportunities for making systems more se�
cure� It renders encryption usable for a wide range
of applications� It also permits larger values of tun�
able security parameters such as key length� In�
creasing security parameters makes cryptography
exponentially �or at least superpolynomially� more
di�cult to break� dwar�ng any bene�t faster hard�
ware may o�er attackers� Unfortunately� one se�
curity parameter�the length and entropy of user�
chosen passwords�does not scale at all with com�
puting power� While many systems require users to
choose secret passwords for authentication� few ac�
tually adapt their algorithms to preserve security in

the face of increasingly powerful attackers�

One widespread use of passwords� and a good ex�
ample of failure to adapt� is the UNIX password
system� UNIX� a multi�user operating system� re�
quires users to prove their identity before accessing
system resources� A user typically begins a session
by providing her username and secret password to a
login program� This program then veri�es the pass�
word using a system�wide password �le� Given the
importance of keeping passwords secret� UNIX does
not store plaintext passwords in this �le� Instead�
it keeps hashes of passwords� using a one�way func�
tion� crypt 	
�� that can only be inverted by guessing
preimages� To verify a password� the login program
hashes the password and compares the result to the
appropriate hash in the password �le�

At the time of deployment in �

�� crypt could hash
fewer than � passwords per second� Since the only
known way of inverting crypt is to guess preim�
ages� the algorithm made passwords very di�cult
to recover from their hashes�so much so� in fact�
that the designers of UNIX felt comfortable leaving
the password �le readable by all users� Today� over
�� years later� a fast workstation with heavily opti�
mized software can perform over ������� crypt op�
erations per second� Attackers can now expediently
discover plaintext passwords by hashing entire dic�
tionaries of common passwords and comparing the
results to entries in a password �le� crypt nonethe�
less still enjoys widespread use� and legacy software
even forces many sites to keep their password �les
readable by all users�

Today we have authentication schemes considerably
more sophisticated than the UNIX password �le� In
practice� however� implementations of these schemes
still often depend on users remembering secret pass�
words� There are alternatives� such as issuing spe�
cial authentication hardware to users or giving them
printed lists of randomly generated access codes� but
these approaches generally inconvenience users or
incur additional cost� Thus� passwords continue to

play an important role in the vast majority of user�
authentication systems�

This paper discusses ways of building systems in
which password security keeps up with hardware
speeds� We present two algorithms with adaptable
cost�eksblow�sh� a block cipher with a purposefully
expensive key schedule� and bcrypt� a related hash
function� Failing a major breakthrough in complex�
ity theory� these algorithms should allow password�
based systems to adapt to hardware improvements
and remain secure �� years into the future�

The rest of the paper is organized as follows� In
Section �� we discuss related work on password secu�
rity� In Section �� we explain the requirements for a
good password scheme� Section � presents eksblow�
�sh� a ���bit block cipher that lets users tune the
cost of the key schedule� Section � introduces the
variable�cost bcrypt password hashing function and
describes our implementation in the OpenBSD op�
erating system� Finally� Section � compares bcrypt
to two widely�used password hashing functions�

� Related Work

Password guessing attacks can be categorized by
the amount of interaction they require with an au�
thentication system� In on�line attacks� the perpe�
trator must make use of an authentication system
to check each guess of a password� In o��line at�
tacks� an attacker obtains information�such as a
password hash�that allows him to check password
guesses on his own� with no further access to the
system� On�line attacks are generally considerably
slower than o��line ones� Systems can detect on�
line attacks fairly easily and defend against them by
slowing the rate of password checking� In contrast�
once an attacker has obtained password veri�cation
information� the only protection a system has from
o��line attacks is the computational cost of checking
potential passwords�

Techniques for mitigating the threat of o��line pass�
word guessing generally aspire to one of two goals�
limiting a system�s susceptibility to o��line attacks
or increasing their computational cost� As a simple
example of the former� many modern UNIX systems
now keep password hashes secret from users� stor�
ing them in a read�protected shadow password �le
rather than in the standard openly readable one�

Much of the work on preventing o��line password

attacks has centered around communication over
insecure networks� If cryptographic protocols rely
on user�chosen passwords as keys� they may open
themselves up to o��line guessing attacks� Gong
et� al� 	
� suggest several protocol design tricks to
thwart password guessing by network attackers� Un�
fortunately� their most interesting proposals require
encryption algorithms with unusual and di�cult to
achieve properties�

Several people have designed secure password pro�
tocols that let users authenticate themselves over
insecure networks without the need to remember or
certify public keys� Bellovin and Merritt 	�� �� �rst
proposed the idea� giving several concrete proto�
cols putatively resistant to o��line guessing attacks�
Patel 	��� later cryptanalyzed those protocols� but
people have since continued developing and re�ning
others in the same vein� More recent proposals such
as SRP 	��� show promise of being secure�

Of course� even a secure password protocol requires
some server capable of validating users with correct
passwords� An attacker who obtains that server�s
secret state can mount an o��line guessing attack�
Because secure password protocols require public
key cryptography 	��� they do have a tunable key
length parameter� However� this parameter pri�
marily controls the di�culty of mounting o��line
attacks without a server�s secret state� it only in�
directly a�ects the cost of an o��line attack given
that state� Tuning key length to preserve password
guessing costs would have other unintended conse�
quences� for instance increasing message sizes and
costing servers unnecessary computation� By com�
bining a scheme like SRP with the bcrypt algorithm
presented in this paper� however� one can vary the
cost of guessing passwords independently from most
other properties of the protocol�

Whatever progress occurs in preventing o��line at�
tacks� one can never rule them out entirely� In fact�
the decision to have an openly readable password
�le was not an oversight on the part of the UNIX
system designers 	
�� Rather� it was a reaction to
the di�culty of keeping the password �le secret in
previous systems� and to the realization that a sup�
posedly secret password �le would need to resist
o��line guessing anyway� This realization remains
equally true today� Aside from the obvious issues
of backup tape security� attackers who compromise
UNIX machines routinely make o� with the list of
hashed passwords� whether shadowed or not�

A poor hashing algorithm not only complicates re�
covery from break�ins� it also endangers other ma�
chines� People often choose the same password on
multiple machines� Many sites intentionally main�
tain identical password �les on all machines for ad�
ministrative convenience� While shadow password
�les certainly do not hurt security� the big �aw in
UNIX password security is not its openly readable
password �le� Rather� it is the choice of a hash
function that cannot adapt to a ������ fold increase
in the speed of hardware and software� This paper
presents schemes that can adapt to such improve�
ments in e�ciency�

Others have already proposed numerous schemes
to increase the cost of guessing passwords� The
FreeBSD operating system� for instance� introduced
a replacement for crypt based on the MD� 	��� mes�
sage digest algorithm� MD� crypt takes consider�
ably longer to compute than the original crypt� Yet�
it still has a �xed cost and thus cannot not adapt
to faster hardware� As time passes� MD� crypt of�
fers steadily decreasing protection against o��line
guessing attacks� Signi�cant optimizations have al�
ready been found to speed up the calculation of
MD� crypt�

Abadi et� al� 	�� propose strengthening user�chosen
passwords by appending random bits to them� At
authentication time� software uses the known part
of the password and a hash of the full password to
guess the random bits� As hardware gets faster�
one can easily tune this technique by increasing
the number of random bits� Unfortunately� pass�
word strengthening inherently gives unauthenti�
cated users the ability to mount o��line guessing
attacks� Thus� it cannot be combined with tech�
niques like SRP that attempt to limit the possibility
of o��line attacks in the �rst place�

Finally� many systems rely less directly on password
security for authentication� The popular ssh 	�
�
remote login program� for example� allows users to
authenticate themselves using RSA encryption� Ssh
servers must have a user�s RSA public key� but they
need not store any information with which to ver�
ify user�chosen passwords� The catch is� of course�
that users must store their private keys somewhere�
and this usually means on disk� encrypted with a
password� Worse yet� ssh uses simple ��DES to
encrypt private keys� making the cost of guessing
ssh passwords comparable to the cost of computing
crypt� Nonetheless� because of its �exibility� ssh�s
RSA authentication is a generally better approach

than schemes more closely tied to passwords� For
example� without modifying the core protocols� ssh
could easily employ the eksblow�sh algorithm pro�
posed in this paper to improve the security of stored
secret keys�

� Design criteria for password

schemes

Any algorithm that takes a user�chosen password as
input should be hardened against password guess�
ing� That means any public or long�lived output
should be of minimal use in reconstructing the pass�
word� Several design criteria can help achieve this
goal�

Ideally� one would like any password handling al�
gorithm to be a strong one�way function of the
password�that is� given the algorithm�s output and
other inputs� an attacker should have little chance
of learning even partial information she could not
already have guessed about the password� Unfortu�
nately� one�way functions are de�ned asymptotically
with respect to their input lengths�an attacker has
negligible probability of inverting a one�way func�
tion on su�ciently large inputs� but exactly how
large depends on the attacker� Because there is a
�xed limit to the size of passwords users will tol�
erate� we need a di�erent criterion for functions on
passwords�

Informally� we would like a password scheme to be
�as good as the passwords users choose�� Given a
probability distribution D on passwords� we de�ne
the predictability R�D� of the distribution to be the
highest probability Pr�s� of any single password s
in D� R�D� � maxs�D Pr�s�� A function of a pass�
word is secure if an attacker�s probability of learning
any partial information about the password is pro�
portional to the product of the work she invests and
the predictability of the password distribution�

What does it mean for an attacker to learn partial
information about a password� We de�ne partial in�
formation to be the value of any single�bit predicate
on a password� Interesting predicates on passwords
might include the �rst bit of a password� or the par�
ity of bits in a password� An attacker can always
guess certain predicates with high probability�for
instance� the trivial predicate P �s� � � which re�
turns � on all passwords� If a function of a password
is secure� however� its output should not let an at�

tacker guess any predicate more accurately than she
could have without the function�s output�

More formally� let F �s� t� be a function� The argu�
ment s represents a user�s secret password� which
will be drawn from a probability distribution D�
The argument t represents any additional non�secret
inputs F might take� Let the values of t be drawn
from a probability distribution T � We model an at�
tacker as a randomized boolean circuit�� A� that
tries to guess a predicate P about a password�
The cost of an attack�or the work invested by
an attacker�is the number of gates in the cir�
cuit� which we denote jAj� We use the notation
Pr	v� � S�� v� � S�� � � � � B� to denote the proba�
bility of statement B after an experiment in which
variables v�� v�� � � � are drawn from probability dis�
tributions S�� S�� � � � � respectively� Now we can de�
�ne what it means for a password function to resist
attack� We say that function F �s� t� is an ��secure
password function if the following hold�

�� Finding partial information about F �s secret in�
put is as hard as guessing passwords� Put an�
other way� for any password distribution D and
predicate P � an attackerA who guesses P based
on output from F will do almost as well when
F is computed on unrelated passwords�

�D� �P� �A���Pr�t� � T� � � � � tc � T� s� D�

b� A�t�� F �s� t��� � � � � tc� F �s� tc���

b � P �s�
�

� Pr
�
t� � T� � � � � tc � T� s� D�

b� A�t�� F �s� t��� � � � � tc� F �s� tc���

s� � D� b � P �s��
���

�
�

�
� jAj � R�D�

�� Finding second preimages is as hard as guess�
ing passwords� �A second preimage of an input
�s� t� is a di�erent password s� �� s for which
F �s� t� � F �s�� t��� Here we model the attacker
A as a randomized circuit with multiple output

�Boolean circuits are a complexity theoretic abstraction�

A boolean circuit is an acyclic collection of interconnected

gates� Each gate computes a boolean function of �� � or �

single�bit inputs� A randomized boolean circuit takes a cer�

tain number of random input bits in addition to its regular

inputs�

bits�

�D� �A�

Pr
�
t� T� s� D� s� � A�s� t��

s �� s� � F �s� t� � F �s�� t�
�

� � � jAj �R�D�

We should �rst note that this de�nition matches
our intuition about a password hashing function like
crypt� If users choose predictable enough passwords�
knowing a password hash gives adversaries a large
advantage�they can compare hashes of the most
popular passwords to that of the password they are
trying to break� If� additionally� one can guess a
useful predicate without even looking at a password
hash�for instance by knowing that the third char�
acter of most passwords is a lower�case letter�then
clearly an adversary can guess this too�

If� however� no single password occurs with partic�
ularly high probability� an adversary should need
to expend a large amount of e�ort �as measured
in circuit gates� to discover any non�trivial infor�
mation about a password� Finally� we also wish to
prevent an attacker from �nding other strings that
hash to the same value as a password� such strings
may prove equivalent to passwords during authen�
tication� The requirement of second preimage re�
sistance guarantees such collisions are hard to �nd�
even with knowledge of the original password� It
also ensures that F does not ignore any bits of its
password input�

The de�nition implies that a secure password func�
tion F �s� t� must make non�trivial use of its second
argument� t� To see this� consider that the �rst bit
of F �s� �� is a perfectly valid predicate on passwords�
An attacker could easily guess this predicate if either
F ignored its second argument or the string � oc�
curred in T with high probability� This point is not
merely an academic one� A single�input password
hashing function F �s� can be inverted by a circuit
large enough to encode a lookup table mapping F �s�
�or su�ciently many bits of F �s�� to s� The size of
such a circuit depends only on the probability dis�
tribution of the passwords� not on the particulars
of F �

As proposed by Morris and Thompson 	
�� however�
lookup tables can be thwarted with the second in�
put to F � which they call a salt� If a random salt
is chosen whenever users establish new passwords�
and if the salt space is large enough to ensure a neg�

ligible probability of recurrence� lookup tables o�er
an adversary no advantage� he may as well compute
F at the time of attack� If� on the other hand� the
salt space is too small� the output bits of F become
useful predicates on passwords� a fact exploited by
the QCrack 	��� program described in Section ��

While salted passwords defeat lookup tables� given
a particular salt and hash� an adversary can still
mount a brute force attack by evaluating F �s� t� on
every possible password� It follows that the best se�
curity one can achieve is � � ��jF j� where jF j is the
cost in gates of implementing F � Usability require�
ments therefore e�ect a lower limit on ��if people
can only tolerate a one second delay for checking
passwords� F can take at most one second to eval�
uate� F should not take signi�cantly less� however�
as this would unnecessarily weaken security�

The number of gates jAj that an adversary can rea�
sonably muster for an attack increases constantly
as hardware improves� Fortunately� so does the
speed of machines that must legitimately evaluate
F � That means passwords should not be hashed by
a single function F with �xed computational cost�
but rather by one of a family of functions with ar�
bitrarily high cost� Instead of repeatedly throwing
out functions like crypt and MD� crypt to start over
with more expensive but incompatible ones� systems
should allow the cost of any password manipulation
software to scale gracefully with a tunable param�
eter� Thus� � can decrease as fast as hardware im�
proves and users will tolerate� Compromised pass�
word databases will then enjoy maximum security
against o��line attacks�

In summary� a good password function makes ex�
tracting any partial information about passwords
as di�cult as guessing passwords� A concrete pa�
rameter� �� should characterize this di�culty� To
achieve low values of �� a password function must
take a second input� the salt� that prevents adver�
saries from bene�ting from large lookup tables� The
best value of � is inversely proportional to the cost
of evaluating a password function� This establishes
a lower limit for � based on the maximum tolera�
ble cost of evaluating F during legitimate use� As
hardware speeds constantly improve� a good pass�
word scheme should allow the cost of F to increase
gradually so that � can decrease over time�

One �nal criterion for a good password function is
then to minimize the value � � jF j� That means one
should make any password function as e�cient as

possible for the setting in which it will operate� The
designers of crypt failed to do this� They based crypt
on DES 	���� a particularly ine�cient algorithm to
implement in software because of many bit transpo�
sitions� They discounted hardware attacks� in part
because crypt cannot be calculated with stock DES
hardware� Unfortunately� Biham 	�� later discovered
a software technique known as bitslicing that elim�
inates the cost of bit transpositions in computing
many simultaneous DES encryptions� While bitslic�
ing won�t help anyone log in faster� it o�ers a stag�
gering speedup to brute force password searches�

In general� a password algorithm� whatever its cost�
should execute with near optimal e�ciency in any
setting in which it sees legitimate use� while o�ering
little opportunity for speedup in other contexts� It
should rely heavily on a CPU�s fast instructions�
for instance addition� bitwise exclusive�or� shifts�
and memory access to state that �ts in a processor�s
�rst level cache� Ideally these operations should all
be portably accessible from high�level languages like
C� so as to minimize the bene�t of hand�coded as�
sembly language implementations� Conversely� the
algorithm should avoid operations like bit transpo�
sition on which customized hardware enjoys a large
advantage�

A password function should also not lend itself to
any kind of pipelined hardware implementation� It
should permit relatively little speedup from any
kind of precomputation�for instance� hashing �����
passwords with the same salt and hashing one pass�
word under ����� salts should each cost ����� times
more than hashing a single password�

� Eksblow�sh Algorithm

We now describe a cost parameterizable and salted
block cipher that we call eksblow�sh for expensive
key schedule blow�sh� Eksblow�sh is designed to
take user�chosen passwords as keys and resist at�
tacks on those keys� As its base we use the blow�
�sh 	��� block cipher by Schneier� which is well�
established and has been fairly well analyzed�

Blow�sh is a ���bit block cipher� structured as a ���
round Feistel network 	���� It uses �� ���bit subkeys�
P�� � � � � P��� which it derives from the encryption
key� The subkeys are known collectively as the P�
Array�

Blow�sh encrypts by splitting a ���bit input block

Ciphertext

P1

P2

P16

P17P18

Plaintext

32 bit 32 bit

32 bit 32 bit

64 bit

64 bit

32 bit32 bit

32 bit

F

F

F

13 More Iterations

Figure �� Blow�sh Feistel network with F being the
Feistel function� using only modular addition and
XOR�

into two ���bit halves� L� and R�� The most�
signi�cant half� L�� is XORed with subkey P�� and
used as input for a function F � The result of that
function is XORed with the least�signi�cant half�
R�� The two halves are then swapped� and the
whole process repeated another �� times for a to�
tal of �� iterations� Thus� for � � i � ��� letting �
denote XOR�

Ri � Li�� � Pi�

Li � Ri�� � F �Ri��

After �� rounds� the two halves are swapped again
�undoing the e�ect of the ��th swap�� and each half
is XORed with another ���bit subkey�

R�� � L�� � P���

L�� � R�� � P���

This process is illustrated graphically in Figure ��

The function F in Blow�sh uses four arrays�
S�� � � � � S�� derived from the encryption key� Each
array contains ��� ���bit words� The arrays act
as substitution boxes or S�boxes� replacing an ��bit
input with a ���bit output� F splits its ���bit in�
put into four ��bit bytes� a� b� c� and d� with a the
most signi�cant byte� It replaces each byte by the
contents of an S�box� and combines the results as
follows� Letting � signify addition modulo ����

F �a� b� c� d� �
�
�S�	a�� S�	b��� S�	c�

�
� S�	d��

EksBlow�shSetup �cost� salt� key�
state � InitState ��
state � ExpandKey �state� salt� key�
repeat ��cost�

state � ExpandKey �state� �� salt�
state � ExpandKey �state� �� key�

return state

Figure �� Eksblow�sh� expensive key schedule blow�
�sh� is a cost parameterizable and salted variation
of the blow�sh block cipher�

Eksblow�sh encrypts identically to Blow�sh� The
two di�er in the functions they use to transform en�
cryption keys into subkeys and S�boxes� Figure �
sketches EksBlow�shSetup� the algorithm used by
eksblow�sh� EksBlow�shSetup has three input pa�
rameters� a cost� a salt� and the encryption key� It
returns a set of subkeys and S�boxes� also known as
a key schedule�

The cost parameter controls how expensive the key
schedule is to compute� The salt is a ����bit value
that modi�es the key schedule so that the same key
need not always produce the same result� as moti�
vated by Section �� Finally� the key argument is a
secret encryption key� which can be a user�chosen
password of up to �� bytes �including a terminating
zero byte when the key is an ASCII string��

EksBlow�shSetup begins by calling InitState� a func�
tion that copies the digits of the number � �rst into
the subkeys� then into the S�boxes�

ExpandKey�state� salt� key� modi�es the P�Array
and S�boxes based on the value of the ����bit salt
and the variable length key� First it XORs all the
subkeys in the P�array with the encryption key� The
�rst �� bits of the key are XORed with P�� the next
�� bits with P�� and so on� The key is viewed as
being cyclic� when the process reaches the end of
the key� it starts reusing bits from the beginning to
XOR with subkeys�

Subsequently� ExpandKey blow�sh�encrypts the
�rst �� bits of its salt argument using the current
state of the key schedule� The resulting ciphertext
replaces subkeys P� and P�� That same ciphertext is
also XORed with the second ���bits of salt� and the
result encrypted with the new state of the key sched�
ule� The output of the second encryption replaces

subkeys P� and P�� It is also XORed with the �rst
���bits of salt and encrypted to replace P� and P��
The process continues� alternating between the �rst
and second �� bits salt� When ExpandKey �nishes
replacing entries in the P�Array� it continues on re�
placing S�box entries two at a time� After replacing
the last two entries of the last S�box� S�	���� and
S�	����� ExpandKey returns the new key schedule�

In computing ExpandKey�state� �� key�� a block of
��� � bits is used instead of the salt� This is equiv�
alent to a single iteration of the standard blow�sh
key schedule� The call to ExpandKey�state� �� salt�
simply treats the salt as a ���byte key�

After calling InitState to �ll a new key schedule with
the digits of �� EksBlow�shSetup calls ExpandKey
with the salt and key� This ensures that all sub�
sequent state depends on both� and that no part
of the algorithm can be precomputed without both
salt and key� Thereafter� ExpandKey is alternately
called with the salt and then key for �cost iterations�
For all but the �rst invocation of ExpandKey� the
second argument is a block of ��� � bits� This more
closely resembles the original blow�sh key schedule�
and also allows EksBlow�shSetup to be implemented
more e�ciently on CPU architectures with few reg�
isters�

We hope that the unpredictable and changing con�
tent of the P�array and S�Boxes will reduce the ap�
plicability of yet unknown optimizations� Addition�
ally the eksblow�sh S�Boxes require � KB of con�
stantly accessed and modi�ed memory� Thus� the
S�Boxes cannot be shared across key schedules�
separate S�Boxes must exist for every simultaneous
execution� This vastly limits the usefulness of any
attempts to pipeline the Feistel network in hard�
ware�

� Bcrypt Algorithm

The problems present in traditional UNIX pass�
word hashes led naturally to a new password scheme
which we call bcrypt� referring to the Blow�sh en�
cryption algorithm� Bcrypt uses a ����bit salt and
encrypts a �
��bit magic value� It takes advantage
of the expensive key setup in eksblow�sh�

The bcrypt algorithm runs in two phases� sketched
in Figure �� In the �rst phase� EksBlow�shSetup
is called with the cost� the salt� and the password�
to initialize eksblow�sh�s state� Most of bcrypt�s

bcrypt �cost� salt� pwd�
state � EksBlow�shSetup �cost� salt� key�
ctext � �OrpheanBeholderScryDoubt�
repeat ����

ctext � EncryptECB �state� ctext�
return Concatenate �cost� salt� ctext�

Figure �� The bcrypt algorithm for hashing UNIX
passwords� based on eksblow�sh�

time is spent in the expensive key schedule� Follow�
ing that� the �
��bit value �OrpheanBeholderScry�
Doubt� is encrypted �� times using eksblow�sh in
ECB mode with the state from the previous phase�
The output is the cost and ����bit salt concatenated
with the result of the encryption loop�

In Section �� we derived that an ��secure pass�
word function should ful�ll several important cri�
teria� second preimage�resistance� a salt space large
enough to defeat precomputation attacks� and an
adaptable cost� We believe that Bcrypt achieves all
three properties� and that it can be ��secure with
useful values of � for years to come� Though we can�
not formally prove bcrypt ��secure� any �aw would
likely deal a serious blow to the well�studied blow�
�sh encryption algorithm�

��� Implementation

We have implemented bcrypt and deployed it as part
of the OpenBSD operating system� Bcrypt has been
the default password scheme since OpenBSD ����

An important requirement of any bcrypt implemen�
tation is that it exploit the full ����bit salt space�
OpenBSD generates the ����bit bcrypt salt from an
arcfour �arc�random���� key stream� seeded with
random data the kernel collects from device timings�

OpenBSD lets administrators select a password
hashing scheme through a special con�guration �le�
passwd	conf�
�� passwd	conf allows detailed control
over which type of password to use for a given user
or group� It also permits di�erent password schemes
for local and YP passwords� For bcrypt� one can also
specify the cost� This lets people adjust password
veri�cation time for increasing processor speed� At
the time of publication� the default cost is � for a
normal user and � for the superuser� Of course�

whatever cost people choose should be reevaluated
from time to time�

To di�erentiate between passwords hashed by dif�
ferent algorithms� every password function other
than the original crypt pre�xes its output with a
version identi�er� Thus a single password �le can
contain several types of password� In the cur�
rent OpenBSD implementation� bcrypt passwords
start with ���a��� while MD� crypt passwords with
������ Because the result of traditional crypt never
begins with a ���� there is never any ambiguity�

� Bcrypt Evaluation

Because bcrypt has adjustable cost� we cannot
meaningfully evaluate the performance of the algo�
rithm on its own� Instead� we will place it in the
context of two popular password hashing functions�
We describe various attacks and optimizations these
functions have undergone� and discuss the applica�
bility of the same techniques to bcrypt�

��� Comparison

In the following� we give a brief overview of two
password hashing functions in widespread use today�
and state their main di�erences from bcrypt�

����� Traditional crypt

Traditional crypt����s design rationale dates back to
�

� 	
�� It uses a password of up to eight characters
as a key for DES 	���� The ���bit DES key is formed
by combining the low�order
 bits of each character
in the password� If the password is shorter than �
characters� it is padded with zero bits on the right�

A ���bit salt is used to perturb the DES algorithm�
so that the same password plaintext can produce
���
� possible password encryptions� A modi�ca�
tion to the DES algorithm� swapping bits i and i���
in the DES E�Box output when bit i is set in the
salt� achieves this while also making DES encryption
hardware useless for password guessing�

The ���bit constant ��� is encrypted �� times with
the DES key� The �nal output is the ���bit salt
concatenated with the encrypted ���bit value� The
resulting
��bit value is recoded into �� printable
ASCII characters�

At the time traditional crypt was conceived� it was
fast enough for authentication but too costly for
password guessing to be practical� Today� we are
aware that it exhibits three serious limitations� the
restricted password space� the small salt space� and
the constant execution cost� In contrast� bcrypt al�
lows for longer passwords� has salts large enough
to be unique over all time� and has adaptable cost�
These limitiations therefore do not apply to bcrypt�

����� MD� crypt

MD� crypt was written by Poul�Henning Kamp for
FreeBSD� The main reason for using MD� was to
avoid problems with American export prohibitions
on cryptographic products� and to allow for a longer
password length than the � characters used by DES
crypt� The password length is restricted only by
MD��s maximum message size of ��� bits� The salt
can vary from �� to �� bits�

MD� crypt hashes the password and salt in a num�
ber of di�erent combinations to slow down the eval�
uation speed� Some steps in the algorithm make it
doubtful that the scheme was designed from a cryp�
tographic point of view�for instance� the binary
representation of the password length at some point
determines which data is hashed� for every zero bit
the �rst byte of the password and for every set bit
the �rst byte of a previous hash computation�

The output is the concatenation of the version iden�
ti�er ������ the salt� a ��� separator� and the ����
bit hash output�

MD� crypt places virtually no limit on the size
of passwords� while bcrypt has a maximum of
�� bytes� We do not consider this a serious lim�
itation of bcrypt� however� Not only are users un�
likely to choose such long passwords� but if they did�
MD� crypt �s ����bit output size would become the
limiting factor in security� A brute force attacker
could more easily �nd short strings hashing to the
same value as a user�s password than guess the ac�
tual password� Finally� like DES crypt� MD� crypt
has �xed cost�

��� Attacks and Vulnerabilities

Once an attacker has obtained a list of password
hashes� passwords can be guessed by comparing the
target list to a list of hashes of candidate passwords�

�� �� �� �� ��
�
n digits lowercase lowercase mixed case mixed case keyboard

alphanumeric alphanumeric characters

� ���� sec ��
 sec
 sec ���� sec ���� sec ��
 min
� ��� sec �
�� sec ��� min ���� min ��� hours
 hours
� ��� sec ���� min ��� hours ���
 hours ��
 days ���� days

 ���� sec
�� hours ��� days �
�� days ��
 days
�� years
� ��
 min �� days ��� days
 years ���� years �
� years

 ��� hours ��� days ���� years ��� years �
�� years ����� years

Table �� Time required to test a single password against a speci�ed password space when being able to
perform ���� ��� evaluations of crypt per second� Password spaces above the separation can be searched
completely within � days� However this does not imply that passwords chosen from below the separation
are secure against password guessing� These times are normal for traditional crypt nowadays�

This task is facilitated by the fact that users tend to
choose predictable passwords� In the following� we
will present commonly used techniques and evaluate
how they a�ect the security of bcrypt�

The most common method is known as a dictionary
attack� It is based on the knowledge that many
users choose their passwords in a very predictable
way� Often a user�s password can be found in a dic�
tionary or is the name of a close relative with small
modi�cations� e	g	� �Susan�� or �neme�i��� The at�
tacker compiles a list of common names and words�
For a given salt� the words in the list are hashed
with the password scheme and compared with en�
tries of the same salt in the password �le� If there
is a match� the plaintext password has been found�

Commonly� lists of likely passwords contain hun�
dreds of thousands of words� A dictionary attack
is only feasible when the one�way function can be
computed quickly� Bcrypt �s cost can be made as
high as tolerable by legitimate users� rendering dic�
tionary attacks impractically slow�

����� Salt Collisions

A salt collision occurs when two password encod�
ings use the same salt� Ideally� there should be no
salt collisions�the salts of di�erent password en�
codings should be di�erent even across password
�les� Because traditional crypt uses only ���
� dif�
ferent salts� it leads to many collisions� as illus�
trated in Figure �� To optimize dictionary attacks�
an attacker can group encrypted passwords by salt�
and hash each candidate password from a dictio�
nary only once per salt� The resulting speedup can

roughly be determined as

number of passwords

number of di�erent salts
�

If salts are generated with a good random number
generator� the expected number of di�erent salts for
n password entries with s possible salts is

EV �n� s� �
n��X
i	�

�s� �

s

�i
� s� �s� ��ns��n�

In a ��� ��� entry password �le� a space of ��� salts
ensures with high probability that every salt will be
unique� For ��� possible salts� on the other hand� we
can only expect about ��

� di�erent salts� At ���

possible salts� the number becomes ���

�� In prac�
tice� however� we �nd that the number of salt colli�
sions is generally higher than expected� The reason
is that many operating systems generate poor ran�
dom numbers�

����� Precomputing Dictionaries

Using precomputation� an attacker can build a list
of the hashes of every common password under ev�
ery possible salt� and store this list on mass data
storage� Inverting the hash of a common password
then becomes a simple lookup in a database� with
little computational cost�

The �
�� edition of the Webster Dictionary con�
tains� after truncation to � characters and duplicate
removal� �
���
� unique entries� Using standard

> 2^41

1000

2000

3000

4000

0 4000 8000 12000

N
um

be
r

of
 d

if
fe

re
nt

 s
al

ts

Number of password file entries

2^12

0

Figure �� Distribution of expected di�erent salts
depending on the salt space against the number of
entries in a password �le�

crypt� the result of hashing every dictionary word
under every possible ���bit salt would �t on a single

 GB hard disk�

One can do better� however� by storing less than the
full output of crypt in a database� The QCrack 	���
password cracking program takes exactly this ap�
proach� QCrack precomputes a database of common
passwords hashed under every salt� Rather than
store the full �� character output of crypt� it further
hashes crypt �s output down to a single byte� When
cracking a password from the dictionary� QCrack
uses the database to rule out ��� of every ��� can�
didate passwords without needing to compute their
hashes� A QCrack database of the Webster Dic�
tionary consumes only �
� MB� QCrack could store
hashes of approximately �� ���� ��� words on a
 GB
hard disk�

Bcrypt has a large enough salt space to make stor�
ing even one bit of information per salt completely
intractable� Moreover� the algorithm makes imme�
diate use of the password and salt from the very be�
ginning� Thus� before knowing a target password�s
salt� there is not even an intermediary state of the
algorithm that can be usefully precomputed�

����� Algorithm Optimization

Since a guessing attack on a password function in�
volves repeated evaluation of the function� any op�
timization of the function will reduce the compu�
tational cost of an attack� making the attack more
practical�

Biham recently discovered a notable software opti�

mization of DES which he called bitslicing 	��� By
replacing DES�s S�Boxes with a logic gate circuit�
one can reduced DES to a set of bit operations� One
can then treat a ���bit processor as �� parallel one�
bit processors� each implementing the circuit�

On a ���MHz Alpha ���� processor� Biham gained
about a factor of � speedup using bitsliced DES� His
implementation encrypted ��
 Mb�sec on average�
compared to Eric Young�s libdes� which achieved
only �� Mb�sec�

For MD� crypt the situation is similar� In �John
the Ripper� 	�� a considerable speedup was made
by simplifying MD� crypt �s central computing loop�

Bitslicing relies on the fact that DES�s S�boxes are
�xed and well known� In contrast� Bcrypt �s S�boxes
change constantly over the course of the algorithm�
and take on di�erent values for every combination
of password and salt� Bitslicing cannot be applied
to bcrypt�

����� Hardware Improvements

In �

 on a VAX����
��� crypt could be evaluated
about ��� times per second� In the last �� years�
machine speed has increased dramatically and the
algorithm has been optimized in various ways�

The Electronic Frontier Foundation built a DES
cracker in �

� and was able to crack a ���bit key in
�� hours with an average search rate of about �����

keys per second 	��� While the EFF DES cracker
cannot be used for password guessing� a comparable
machine could crack traditional crypt by brute force
in �� days� compared to �
� years on the fastest al�
pha processor to which we had access�

The impact of increasing processor speed and better
optimization of the password hashing algorithm is
shown in Figure ��

Both traditional and MD� crypt operate with a
�xed number of rounds� On a modern Alpha proces�
sor� traditional crypt can already be computed fast
enough to render it unusable with readable pass�
word �les� When using specialized DES hardware�
the computing time can be reduced again by several
orders of magnitude�

Neither traditional nor MD� crypt support a vari�

* estimated

Generic Library

P5 133 MHz
OpenBSD 2.3

Original

10

100

1000

crypts/sec

10000

BCrypt (2**5 rounds)

MD5 Crypt

Traditional DES Crypt

Bitsliced DES Crypt

John the Ripper V1.5

Alpha 21164A 600MHz

John the Ripper V1.5
x86 Assembler
P5 133 MHz

214000

3.6

2500

6.5

335

12500

850

62.569

VAX-11/780*
1977

22.5

Figure �� Impact of Algorithm Optimization and Advance in Processors

able number of rounds� With increasing process�
ing power� these functions become steadily easier to
compute� In contrast� bcrypt will adapt to more
powerful attackers� Moreover� its inner loop re�
lies exclusively on operations that are e�cient on
general�purpose CPUs� leaving little opportunity for
specialized hardware to achieve dramatic improve�
ments�

� Conclusion

Many authentication schemes depend on secret
passwords� Unfortunately� the length and entropy
of the passwords users choose remain �xed over
time� In contrast� hardware constantly improves�
giving attackers increasing computational power�
As a result� password schemes �including the tradi�
tional UNIX user�authentication system� are failing
to withstand o��line password guessing attacks�

In this paper� we formalize the notion of a password
scheme �as good as the passwords users choose��
and show that the computational cost of such a
scheme must necessarily increase with the speed of
hardware� We propose two algorithms of parame�
terizable cost for use with passwords� Eksblow�sh� a
block cipher� lets one safely store encrypted private
keys on disk� Bcrypt� a hash function� can replace
the UNIX password hashing function or serve as
a front�end to secure password protocols like SRP�
We have deployed bcrypt as part of the OpenBSD
operating system�s password authentication� So far�

it compares favorably to the two previous hash�
ing algorithms� No surprise optimizations have yet
turned up� As hardware speeds increase� OpenBSD
lets one preserve the cost of o��line password crack�
ing by tuning a simple con�guration �le�

� Acknowledgments

We thank Solar Designer for helpful discussions on
optimization and �aws of password schemes� We
further thank Angelos D� Keromytis� Peter Honey�
man� Robert T� Morris� and Frans Kaashoek for re�
marks and suggestions�

References

��� Mart��n Abadi� T� Mark A� Lomas� and Roger Need�
ham� Strengthening passwords� Technical note
���	�
��� DEC Systems Research Center� Septem�
ber ���	�

��� Steven M� Bellovin and Michael Merritt� Encrypted
key exchange
 Password�based protocols secure
against dictionary attacks� In Proceedings of the

���� IEEE Symposium on Security and Privacy�
Oakland� CA� May �����

��� Steven M� Bellovin and Michael Merritt� Aug�
mented encrypted key exchange� In Proceedings

of the First ACM Conference on Computer and

Communications Security� pages ������
� Oak�
land� CA� November �����

��� Eli Biham� A Fast New DES Implementation in
Software� In Fast Software Encryption� �th In�

ternational Workshop Proceedings� pages ��
��	��
Springer�Verlag� ���	�

��� Solar Designer� John the Ripper�
http���www�false�com�security�john�

��� Electronic Frontier Foundation� Cracking DES�
O�Reilly and Associates� �����

�	� Li Gong� T� Mark A� Lomas� Roger M� Needham�
and Jerome H� Saltzer� Protecting poorly chosen
secrets from guessing attacks� IEEE Journal on

Selected Areas in Communications� �����
��������
June �����

��� Shai Halevi and Hugo Krawczyk� Public�key cryp�
tography and password protocols� In Proceedings of

the �th ACM Conference on Computer and Com�

munications Security� �����

��� Robert Morris and Ken Thompson� Password Secu�
rity
 A Case History� Communications of the ACM�
������
������	� November ��	��

��
� National Bureau of Standards� Data Encryption
Standard� January ��		� FIPS Publication ���

���� Sarvar Patel� Number theoretic attacks on secure
password schemes� In Proceedings of the ���� IEEE
Symposium on Security and Privacy� pages ����
��	� Oakland� CA� May ���	�

���� QCrack� ftp���chaos�infospace�com�pub�

qcrack�qcrack������tar�gz�

���� R� L� Rivest� The MD� Message Digest Algorithm�
RFC ����� Apr �����

���� Michael Ruby� Pseudorandomness and Crypto�

graphic Applications� Princeton Computer Science
Notes� �����

���� Bruce Schneier� Description of a New Variable�
Length Key� ���Bit Block Cipher �Blow�sh�� In
Fast Software Encryption� Cambridge Security

Workshop Proceedings� pages �����
�� Springer�
Verlag� December �����

���� Thomas Wu� The secure remote password protocol�
In Proceedings of the ���� Internet Society Network
and Distributed System Security Symposium� pages
�	����� San Diego� CA� March �����

��	� Tatu Yl�onen� SSH � secure login connections over
the Internet� In Proceedings of the 	th USENIX

Security Symposium� pages �	���� July �����

