Transparent Network Security Policy Enforcement

Angelos D. Keromytis
Distributed Systems Lab, University of Pennsylvania
angelos@openbsd.org

Jason L. Wright
Network Security Technologies, Inc. (NETSEC)
jason@openbsd.org

Abstract

Recent work in the area of network security, such as
IPsec, provides mechanisms for securing the traffic
between any two interconnected hosts. However, it
is not always possible, economical, or even practi-
cal from an administration and operational point of
view to upgrade the software and configuration of
all the nodes in a network to support such security
protocols.

One apparent solution to this problem is the use of
security gateways that apply the relevant security
protocols on behalf of the protected nodes, under
the assumption that the “last hop” between the se-
curity gateway and the end node is safe without
cryptography. Such a gateway can be set to en-
force specific security policies for different types of
traffic. While this solution is appealing in static sce-
narios (such as building so-called “intranets”), the
use of Layer-3 (network) routers as security gate-
ways presents some transparency and configuration
problems with regards to peer authentication in the
automated key management protocol.

This paper describes the architecture and imple-
mentation of a Layer-2 (link layer) bridge with ex-
tensions for offering Layer-3 security services. We
extend the OpenBSD ethernet bridge to perform
simple IP packet filtering and IPsec processing for
incoming and outgoing packets on behalf of a pro-
tected node, completely transparently to both the
protected and the remote communication endpoint.
The same mechanism may be used to construct
“virtual local area networks,” by establishing IPsec
tunnels between OpenBSD bridges connected geo-
graphically separated LANs. As our system oper-
ates in the link layer, there is no need for software

or configuration changes in the protected nodes.

1 Introduction

Network bridges are simple devices that transpar-
ently connect two or more LAN segments by stor-
ing a frame received from one segment and for-
warding it to the other segments. More intelligent
bridges make use of a spanning tree algorithm to
detect and avoid loops in the topology. We have
implemented the basic form of an ethernet bridge
in OpenBSD that also provides an IP filtering ca-
pability. Thus, the bridge can be used to provide
a LAN-transparent firewall between hosts such that
no configuration changes are needed on client ma-
chines, and only minor changes in network topology
are necessary.

For this, we make use of ipf, the standard packet
filtering mechanism available. As ethernet frames
pass through the bridge, they are examined to see
if they carry IP traffic. If not, the frame is just
bridged. If the frame does contain IP traffic, the eth-
ernet header is removed from the frame and copied.
The resulting IP packet is passed on to ipf, which
notifies the bridge whether the packet is to be for-
warded or dropped. The ethernet header of the
frame under examination is appropriately modified
on the frame to be forwarded, and the resulting
frame is then bridged as normal.

The bridge can also be used to enforce restrictions
on which addresses can appear on each ethernet seg-
ment, which helps localize where ARP spoofing at-
tacks can occur. Static MAC address cache entries
are provided so hosts can be limited to a particu-

lar port and malicious users cannot force the bridge
to send traffic to the wrong segment. The ability to
learn MAC addresses dynamically is configurable on
each port of the bridge, and broadcast discovery for
machines unknown to the bridge can be toggled on
a per port basis. Additionally, a mechanism is pro-
vided for filtering ethernet frames based on source
and/or destination MAC address.

This functionality, useful on its own, can be coupled
with the IPsec [9] support available in OpenBSD,
to allow creation of virtual LANs. This is achieved
by overlaying an IPsec-protected virtual network on
the wide area network (or even the Internet itself).
The changes necessary to the bridge and IPsec code
for this were fairly minimal, due to compatibility
of some design decisions made independently in the
development of the two packages.

The enhanced bridge can also be used to provide
transparent IPsec gateway capability for a host or
even a network. In this mode, the bridge examines
transient IP traffic and may, depending on security
policy, establish IPsec security associations (SAs)
with a remote host pretending to be the local com-
munication endpoint for an IP session'. There are
two main benefits from this. First, this allows pro-
tection of the communications of a host or network
without changes to the protected hosts (which may
not even be possible, for old, unsupported, or ex-
tremely lightweight systems). Second, the security
gateway can act as a security policy enforcer, en-
suring that incoming and outgoing packets are ade-
quately protected, based on system or network pol-

icy.

1.1 Paper Organization

Section 2 briefly describes the bridge itself and the
filtering of frames containing IP traffic. Section 3
describes the use of IPsec in conjunction with the
bridge to build virtual LANs and transparent IPsec
gateways. Section 4 discusses open ends and future
work, and Section 5 concludes the paper.

IThe term “IP session” is used here loosely to imply a
packet flow between two hosts, one of which is on one of the
local segments and is “protected” or “supervised”.

2 Bridge

Bridges are devices that operate at the data link
layer, tying together different ethernet (or other
LAN) segments. In OpenBSD, the bridge is imple-
mented as a pseudo-network interface inside the ker-
nel. Real ethernet interfaces are added to the bridge
interface as “bridge members,” and for the purpose
of using IPsec with the bridge, enc interfaces can be
added on as members. The enc interfaces contain
the security association (SA) for communication to
remote LANSs. In all ethernet drivers under BSD, re-
ceived frames are assembled into mbufs [11], a data
structure that provides for easy insertion and dele-
tion of data with little or no data copying. The
ethernet header is removed and passed along with a
reference to the receiving interface and the mbuf
containing the frame data to ether_input(). The
bridge intercepts the frame early in this function,
after a small amount of bookkeeping is performed.

On entry to the bridge code, the frame is checked to
see if it is a broadcast, multicast, or unicast frame
(Figure 1). Broadcast and multicast frames are
copied and queued on the bridge (so they can be
forwarded in all member interfaces), and the origi-
nal frame is returned to ether_input(), so that it can
be processed by the bridge machine itself. Unicast
frames are checked to see if the destination matches
any of the MAC addresses of ports on the bridge; if
so, the frame is returned to ether_input() for local
processing. If the frame is unicast and addressed
to the bridge machine, the frame is queued and
not passed back to ether_input(). When a packet
is queued, a software interrupt is scheduled so that
bridge processing will occur outside of the interrupt
context of the ethernet card.

The bulk of the frame processing occurs in the soft-
ware interrupt handler, bridgeintr() (see Figure 2).
This routine loops through each bridge interface,
pulling frames from their input queues. The source
ethernet address and source interface are recorded
into the bridge’s address cache for each frame (after
some address spoof-checking). The destination eth-
ernet address is looked up in the cache; if the inter-
face returned by the lookup is the same as the inter-
face where the frame originated, no further process-
ing is done. If the destination interface differs from
the source, the frame must be forwarded (bridged).
If the frame is for a multicast or broadcast desti-
nation, the frame must be forwarded to all member
interfaces of the bridge. To avoid overloading enc

EthernetO

Y

Ethernet Driver[]

Y

ether_input()O)

IPsec (enc)O

A 4

etherip_input()OJ

IPsecl]
extensionslJ

all framesO

n

A 4

bridge_input()O

B
>

Frame queued,O]

soft interruptd

<
l

broadcast andJ

local frames[]

A4
Layer-30
Protocols]

scheduledO

broadcast andJ

non-local frames(]

Figure 1: Frame flow from driver to bridge and layer-3 protocols.

interfaces with multicast traffic from fast ethernet
interfaces, it is possible to disallow multicast packet
and/or frame forwarding over the bridge. Currently,
this is specified for the whole bridge. In the future,
we would like to be able to specify this on a per-
member interface basis.

2.1 Layer-3 Filtering

Before frames are forwarded, they are filtered by
calling one of the ipf routines with the frame to be
processed. This allows for standard filtering rules
to be applied to bridge member interfaces as they
would be for normal routed firewall. Rules are ap-
plied to all incoming frames that contain IP traffic
and are bound to each member interface.

The ipf routines expect an IP packet to be passed
to them, but the bridge operates in terms of eth-
ernet frames. The ethernet header is examined to
determine whether the frame contains an IP packet.
Since there are two possible encapsulation methods
for IP over ethernet, both must be examined and
the appropriate amount of header information must
be copied and removed from the frame, leaving the
IP data intact. The resulting packet is passed to ipf,
which either drops the packet or returns it. Packets
that are not filtered have their ethernet headers re-
attached and are finally forwarded as determined by
the bridge. Using this approach, we avoided having
to modify ipf code at all.

2.2 Layer-2 Filtering

In addition to providing IP (Layer-3) filtering, the
bridge is capable of filtering packets based on source
and destination ethernet MAC address. The filter-
ing rules follow a syntax much like the ipf rules and
are applied in the order in which they are added.
Rules can be applied both as a frame is received by
the bridge (on input) or before the frame is sent out
from the bridge (output).

The bridge can also be used to block all non-IP
traffic. A flag on each member interface specifies
whether it should allow non-IP traffic to be passed
in or out based on the protocol field in the ethernet
header. This allows frames to be blocked when they
cannot be filtered by the Layer-3 mechanisms pro-
vided so that tunnels through other protocols can-
not be created. The only protocols allowed through
an interface with this flag are the protocols nec-
essary for IP to function: IPv4, IPv6, ARP, and
RARP.

2.3 Bridge as Normal Host

A machine acting as a bridge need not have an IP
address. All of the filtering provided by the bridge
and ipf can be handled in the absence of an IP ad-
dress, and this is actually an easier case to handle.

For the bridge machine to act as a normal host, in
addition to its duties as a bridge, several changes
were necessary to the path a frame takes through
the kernel. As discussed above, unicast frames that

bridgeintr()0

i Individual Frame[

Record MACO
source address(]

!

Drop samel]
segment frames[]

|

Multicast[
handlingd

!

Layer-2 filteringd
(output)d

] 7 Queued onO
o . interface NO /

| Layer-2 filteringD) |
, (output)d
Tl SRR

Layer-2 filtering |:|
(output)d "'

Non-IPO
handlingd

Layer-3 (IP)O
filteringd

Layer-2 filteringdl
(input)0

Figure 2: Frame flow from within bridgeintr() with Layer-2 and Layer-3 handling.

are addressed to any of the member interfaces of the
bridge are simply returned to ether_input(). Broad-
cast and multicast frames must be copied. The orig-
inal frame is returned to ether_input(), and the copy
is queued on the bridge.

For frames sent by the bridge, ether_output() was
modified to include a special case for interfaces
that are bridge members and the frame to be sent
is passed to bridge_output(). This function exam-
ines the ethernet destination address of the frame.
For unicast destinations, the bridge address cache
is used to locate the recipient. For multicast and
broadcast destinations, as well as unicast destina-
tions not found in the address cache, the frame is
forwarded to all member interfaces of the bridge.

As a result of this design, a machine acting as a
bridge can also participate on the LAN as a normal
host. When, for example, it sends an ARP request
for a host, it will be forwarded out of every member
interface. When a reply is received on any inter-
face, the source interface and address are added to
the bridge address cache as well as its ARP cache,
and the frame is processed as normal. From there,
all unicast frames to the remote host will use the in-
formation from the address cache for sending frames
only on the correct interface.

2.4 Bridge Security

As discussed previously, the bridge provides several
methods for enforcing network security policy. One
form of internal attack is MAC spoofing where one
host forges packets using the ethernet MAC address

of a victim host. The bridge provides two measures
for preventing this attack from being completely
successful: Layer-2 filters and static address entries.

For the Layer-2 filters, the ethernet MAC address
of the potential victim is added to a set of rules.
For the bridge interface on the segment where the
host is supposed to be, rules are added to permit the
address to be the source and destination of frames
for input and output. On the other interfaces, the
address is added to rules blocking it as a source
address on input and destination address on output
from each interface.

Additionally, adding a static address cache entry
that binds the ethernet MAC address of the poten-
tial victim host to the bridge interface on the same
segment as the host will prevent the bridge address
cache from being polluted with invalid data. The
bridge cannot prevent the attack from being suc-
cessful on individual segments, but it can limit its
scope in one segment only.

Another form of internal attack, ARP spoofing, in-
volves a host on the network using its own MAC
address and forging ARP responses claiming to be
another host. The bridge does not treat ARP pack-
ets different from other packets, so this attack is
not directly preventable. The attacking host may
be able to convince hosts on other segments that its
ethernet MAC address is the one associated with
the IP address victim host, but by using IP filters,
actual IP packet communication through the bridge
can be prevented.

3 Bridging and IPsec

The filtering capabilities offered by the bridge allow
its use as a transparent packet filtering firewall. As
was the case with traditional firewalls however, fil-
tering by itself is not sufficient in fulfilling network
security concerns. Network layer encryption, typi-
cally in the form of IPsec, is seeing increasing use
in protecting traffic between networks, hosts, and
users. Thus, we decided to augment the filtering
bridge with IPsec capabilities.

This section starts with a brief overview of the IPsec
implementation in OpenBSD, then describes the
two configurations where bridging and IPsec may
be used together.

The first of these configurations, “virtual LAN,” is
used to transparently and securely connect ethernet
segments over a wide area network. This is achieved
by encapsulating ethernet frames inside IPsec pack-
ets which are then transmitted to a remote bridge
that removes the protection and forwards the frames
to the local LAN.

The second configuration is what the standards call
a “bump in the wire” (BITW) implementation [9],
wherein a security gateway (the bridge) transpar-
ently implements IPsec on behalf of one or more
“protected” hosts. This allows gradual introduc-
tion of IPsec in a network without changing the end
host configuration or software. This configuration
is also a common design feature of network security
systems used by the military.

Perhaps more importantly, such a transparent IPsec
gateway can be used to enforce security properties
for communications between the protected (or su-
pervised) hosts and the rest of the world. Packets
traversing the gateway can be examined and, de-
pending on system policy:

e They may be forwarded or dropped, similar to
a packet filtering firewall.

e Outgoing packets may cause the security gate-
way to attempt to establish a security associ-
ation (SA) with the destination host, pretend-
ing to be the originating host, if the packets are
unencrypted. If the packets are already IPsec-
protected, it could simply forward them (or,
in our case, bridge them). Naturally, the secu-
rity gateway may always opt to establish an SA

with the destination, regardless of the existing
security properties of the packet stream.

e Similarly, for incoming packets, the gateway
could establish a security association with the
originator if the packet was received unen-
crypted and/or unauthenticated, again pre-
tending to be the destination host.

e Finally, the bridge can intercept incoming IKE
[5] packets that request negotiation with one of
the protected hosts, and perform the negotia-
tion as that host.

Thus, in the last three cases, the security gateway
acts as a transparent network policy enforcer. A
routing firewall can perform the same functions,
however it would have to establish tunnel SAs be-
tween itself and the remote host on behalf of the
protected host. It would do so using its own IP
address, an so would need to “prove” its right to
proxy-IPsec for the end host. While this is trivial
for static configurations, where the identities and
network addresses of the two peers are known a pri-
ori, the situation becomes more complicated when
trying to do opportunistic encryption.

The two primary envisioned methods for host au-
thentication are DNSSEC [3] and X.509 [2]. In the
former case, the domain name servers can securely
provide the public key associated with a host name
or address. That key may then be used to authen-
ticate the IKE peer. In the X.509 case, a Certi-
fication Authority (CA) infrastructure is assumed
to provide the public key of an end host or user
(the protocols for doing so in a large-scale network
such as the Internet are less well-defined than DNS).
Here, the IP address of the host associated with a
key is embedded in an X.509 certificate. In either
case however, it is not immediately clear (and cur-
rently undefined) how to express the right of a fire-
wall to establish SAs on behalf of a host. While
work has recently started in the IETF IP Security
Policy (IPSP) Working Group, development and de-
ployment of a protocol that would allow security
gateway discovery is some years away.

3.1 OpenBSD IPsec

IPsec in the OpenBSD kernel is implemented as a
pair of transport protocols [7, 8]. Incoming IPsec
packets are switched to the appropriate IPsec pro-
tocol for processing by ipvf-input(), following the

usual packet processing path in the kernel (similar,
for example, to TCP or UDP). Note that only pack-
ets destined for the local host are handled this way;
IPsec packets that are passing through are simply
forwarded if the host is configured to act as a router,
otherwise they are dropped).

Outgoing packets are intercepted at ip_output(),
where a check is made to see if IPsec processing is
necessary. If so, the appropriate IPsec protocol out-
put routines are called which encrypt/authenticate
the packet, and then re-send it via ip_output() speci-
fying that IPsec processing has already occurred (so
as to avoid loops). Two methods are used to deter-
mine whether a packet needs to be IPsec-processed:

e If the packet originated from a local socket,
it may have an attached Security Association

(SA).

e If no such information is available, the source
and destination addresses and ports from the
packet are used to make a lookup in the kernel
Security Policy Database (SPD). In OpenBSD,
the SPD is implemented as a new protocol fam-
ily in the radix tree, which is also used for rout-
ing entries. There are several benefits to using
the radix tree:

— Code reuse (and, thus, bug avoidance).

— The radix tree internal representation is
compact, allowing for large numbers of
SPD entries without high memory require-
ments.

— Lookup cost scales well with number of
entries in the table.

— Because a lookup returns the most specific
result, it is easy to implement “backup”
entries for packet classes (or, conversely,
we can have special case handling of cer-
tain packet classes).

In both cases, the lookup provides enough infor-
mation to locate the SA. Note that, on input, the
packet itself contains enough information to locate
the SA. The SA itself contains such information as
the cryptographic algorithms and keys to be used,
what optional features of the protocols are in use,
various expiration timers, etc.

Both the SA and SPD tables may be populated ei-
ther through manual keying utilities, or by some

automated key management daemon (like IKE [5]
or Photuris [6]). The interface to the kernel for ei-
ther of these methods is via the PE_KEY socket [14],
which is in many ways similar to the BSD routing
socket.

Both in input or output, if the necessary crypto-
graphic material has not been negotiated with the
remote IPsec endpoint (for example, when doing on-
demand or “opportunistic” IPsec), it is possible to
notify a key management daemon which will then
negotiate and install the proper SA and SPD en-
tries in the kernel.

We have also implemented the enc pseudo-interface.
Input packets that are IPsec-processed are made to
appear as if they were received from the enc inter-
face, by changing the interface pointer in the mbuf
header. Thus, an administrator can easily filter non-
IPsec protected packets using any packet filtering
package. Furthermore, utilities like tepdump [13]
can be used to view the intermediate products of
IPsec processing, for debugging purposes (this only
works if IPsec processing takes place in the local
host).

A more extensive (if somewhat dated) overview of
the OpenBSD IPsec architecture is given in [10].

This is the standard IPsec processing that is more or
less common across different implementations (and
even operating systems). Use of IPsec in conjunc-
tion with the bridge, especially in the “bump in the
wire” scenario, requires somewhat different process-
ing. We shall describe these changes and require-
ments in the next two subsections.

3.2 Virtual LANSs

Given the way the bridging code operates, in partic-
ular with respect to member interfaces being added
to and removed from the bridge, it was a simple ob-
servation that we could extend the role of the enc
interface so that it could be used by the bridge. Ac-
cordingly, we modified the enc interface such that
an incoming and an outgoing SA can be associated
with it, through the standard ifconfig command 2.
Currently, such SAs must be manually configured,
via the ipsecadm utility.

2As an artifact of our implementation, more than one SAs
can be associated with an enc interface.

The effect of these changes is that local area net-
works (LANs) may be bridged over a public net-
work. All that is necessary is that each LAN con-
tain an IPsec bridge connecting it to one or more
other LANs. From the point of view of the bridge,
the IPsec link is identical to an ethernet network, al-
lowing for creation of arbitrary topologies. Layer-2
and Layer-3 filtering, spanning tree algorithms, etc.
may all be used in the IPsec-bridged network with
literally no changes.

The modifications needed to the enc and bridge in-
terface code were minimal. For the bridge, the only
changes necessary were to allow non-ethernet inter-
faces to be attached and initialized properly (for ex-
ample, it is not necessary to switch an enc interface
into promiscuous mode). In the enc code, the rou-
tine that handles transmission was augmented to
pass all enqueued ethernet frames to IPsec for pro-
cessing and further transmission, after encapsulat-
ing them in IP or IPv6. Note that no SPD lookup is
necessary here, since the output SA to use is already
known.

To support multiple bridge topologies on the same
host, a configurable number of enc interfaces is cre-
ated. This number may be set at kernel compile
time. By convention, packets received on SAs that
do not have an enc interface associated with them,
are made to appear as if they arrived on the enc0
interface. Furthermore, the enc(interface is not al-
lowed to have any SAs associated with it, nor can it
be attached to a bridge. Thus, packets on SAs that
have an enc interface associated may be traced or
filtered using that interface. For all other SAs, the
encl interface may be used.

Implementation of the Ethernet-over-IP protocol
also proved straightforward, as the output side of
the protocol and the first half its input processing
are identical to IP-in-IP encapsulation. At the end
of input processing, if its input interface is linked to
a bridge, the packet is passed to the bridge input
routine. If a frame is received over an IPsec SA, its
input interface will be the enc interface associated
with the SA (see Figures 1 and 2).

In all, less than 300 lines of additional code in IPsec
and the bridge were necessary to implemented the
virtual LAN functionality.

When it comes to performance, the highest cost is,
as might be expected, in the encryption. Figure 3
shows the cost of various algorithms (and combina-

tions thereof). Note that AH only performs authen-
tication (the packets are unencrypted).

Note however that it is usually the case that
the wide-area network link over which the vir-
tual LAN is established is much slower than the
member LANs, and slower than the times shown
above. Thus, realistically, the performance is lim-
ited mainly by the interconnecting infrastructure.
The filtering capabilities of the bridge (blocking
multicast/broadcast and non-IP packets) can be of
some value here in managing the volume of traffic
sent over the encrypted links.

Virtual LAN (vLAN) functionality is offered by a
number of bridges, albeit it is used to mean some-
thing different from what we have described; more
specifically, vLANs are used to compartmentalize a
physical network into a number of “isolated” LANs.
The main goal is to decrease the traffic “noise” as
seen by machines that do not need to process it (e.g.,
a printer does not need to receive NFS packets; like-
wise, normal hosts on the subnet probably do not
need to see the AppleTalk packets the printserver
uses to submit jobs to the printer). A side effect of
vLAN employment is a limited form of security from
casual packet sniffing. Such vLANs do not provide
the same features our encrypting bridge offers (and
vice versa).

3.3 Bump In The Wire

As mentioned in section 3, the bridge can also be
used as a transparent IPsec box, sitting in front
of a host or network and IPsec-processing packets
traversing it. This configuration is called “bump in
the wire” (BITW) in the IPsec architecture. The
encrypting bridge as described in the previous sec-
tion can be used almost as-is when the protected
hosts or networks are configured to only talk to one
remote host (or security gateway): an incoming and
outgoing SA pair can be associated with an enc in-
terface as before, and IPsec processing is done along
the same lines. However, rather than encapsulating
ethernet frames inside IP packets (and then IPsec-
processing these), we extract the IP packets from
the ethernet frames and do IP-in-IP encapsulation
instead. The administrator can specify which of the
two types of encapsulation should be used simply
by setting the appropriate interface flag using the
ifconfig command.

Transform

Mbit /second

Software AH MD5

67.87

Software AH SHA1

47.79

Software ESP DES-MD5

19.56

Software ESP Blowfish-SHA 1

23.61

Software ESP 3DES-SHA1 9.07

Hardware ESP DES-MD5

62.12

Hardware ESP 3DES-SHA1

63.12

Figure 3: Throughput of a TCP session over IPsec between two K6-3/550 boxes directly connected with
100Mbit /s ethernet. For the hardware numbers, we used a card with the Hi/Fn 7751 chip.

The SAs associated with the enc interface (which
must be manually configured) can use the IP ad-
dress of the bridge, or the IP address of the pro-
tected host. In the former case, the bridge exhibits
the exact same characteristics as an encrypting gate-
way (packets sent to the remote host or gateway list
the bridge’s IP address as the source); in contrast
to a gateway however, no configuration changes are
necessary in the network or the protected host(s)
when placing the bridge. Since SA configuration is
manual, there are no issues with authentication dur-
ing key establishment (as described in section 3).

When the SAs use the IP address of the protected
host, the bridge is totally transparent to both the
protected host and the destination host or gateway.
There are two issues that need to be addressed in
this configuration however:

e The IPsec standard specifies that IP fragments
should not be IPsec processed in transport
mode. That is, fragmentation must occur af-
ter IPsec processing has taken place, or tunnel
mode (IP-in-IP encapsulation) must be used.
Thus, the bridge must either use only tunnel
mode IPsec, or reassemble all fragments re-
ceived from the protected host, IPsec-process
the re-constructed packet, then fragment the
resulting packet. For performance and sim-
plicity reasons, we decided to use the former
approach. The disadvantage is that all IPsec-
processed packets are 20 bytes larger (the size
of the external IP header).

e Since the remote host is not aware of the en-
crypting bridge’s existence, IPsec packets will
be addressed to the protected host or network.
Thus, we have to modify the bridge to recognize
these addresses and process those IPsec pack-
ets. In fact, address recognition is unnecessary.

The bridge only has to watch for IPsec pack-
ets (transport protocol ESP or AH), and use
the information in the packet to perform an
SA lookup. If an SA is found, the packet is
processed. Otherwise, it may be dropped or al-
lowed through depending on the filtering con-
figuration.

A hybrid SA configuration may be used (where the
bridge uses its address in one direction, and the pro-
tected host’s address in the other). Such a configu-
ration does not seem to offer any substantial benefit
however (and may in fact result in confusing the ad-
ministrator).

3.4 Transparent Policy Enforcement

While the mechanism described in the previous sub-
section is useful in its own right, its usefulness dra-
matically expands when the bridge is modified such
that it can automatically establish SAs on behalf of
the protected hosts.

Our IPsec implementation already supports dy-
namic SA acquisition by notifying a key manage-
ment daemon like isakmpd [4] using the PF_KEY
interface. SA acquisition occurs in the following two
cases:

e An application requests some security service
on a socket, by using the setsockopt() system
call, and no SAs appropriate for the traffic pat-
tern or security level exist.

e The kernel decides that a packet needs to be
IPsec-processed, but no appropriate SAs exist.
The kernel reaches this decision by consulting
the SPD (as described in section 3.1).

We can use the same mechanism inside the bridge
to dynamically establish SAs: when an IP packet
(rather, an ethernet frame containing an IP packet)
reaches the bridge and is about to be “transmit-
ted” over an enc interface, an SPD lookup is made.
If an SA appropriate for this packet already exists,
it is used. Otherwise, the packet is dropped and
a notification is sent to the key management dae-
mon to establish such an SA. The granularity of
the SA may be configured by the administrator (the
same SA may be used for all traffic between the pro-
tected and the remote host, or just the specific TCP
connection may be protected). Future packets with
the same characteristics as the original packet will
make use of the newly-established SA. Fortunately,
no changes to the SPD are necessary.

This mechanism may be used to perform automatic
re-keying for the virtual LAN or the simple “bump
in the wire” configurations described in the previous
two subsections.

However, left to its own devices, key management
will establish an SA using the IP address of the
bridge (and thus end up being functionally equiv-
alent to an encrypting gateway). To really hide the
bridge from the remote host, the source address of
the protected host must be used. Thus the key
management daemon, isakmpd, has to operate in
the “bridge mode,” wherein it asks the kernel to
use a non-local IP address. This requires a minor
change in the bind() system call code, to allow for
socket binding to non-local addresses. To capture
the responses, all UDP traffic to port 500 (the port
used by the IKE protocol) is diverted to the bridge
isakmpd. This is also necessary when remote hosts
attempt to initiate an IKE exchange with a pro-
tected host. In both cases, isakmpd must be in-
formed of and use the “local” address associated
with the incoming packet. isakmpd also needs the
“local” address so as to select the appropriate au-
thentication information (e.g., secret DSA [15] or
RSA [12] key when doing X.509 or DNSSEC au-
thentication). The changes to this effect are fairly
minimal.

Incoming IPsec packets are processed as described
in the previous subsection. Other incoming packets
may cause an SA acquisition, depending on the secu-
rity policy set by the administrator. Again, isakmpd
needs to be informed of what IP address to use as
the source address during the exchange.

The combination of packet filtering through ipf and

SA-on-demand can be used effectively to enforce
network security policy for the protected host(s).
One particularly interesting configuration involves
the bridge establishing SAs for unencrypted-only
traffic; if end-hosts use IPsec or SSL for end-to-
end packet security, the bridge simply forwards the
packets. In another configuration, the bridge per-
mits all packets through, but attempts to establish
SAs for such communications and uses them if the
remote hosts can do IPsec (also known as “oppor-
tunistic encryption”).

4 TImplementation Status and Future
Work

Currently, the bridge lacks support for the span-
ning tree protocol which is part of the IEEE 802.1D
standard[16], so care must be taken to ensure that
loops are not created in the network. The Layer-2
filter rule system should be extended to provide a
general mechanism for filtering specific ethernet pro-
tocols. We also intend to extend the bridge to allow
for other types of LAN bridging (FDDI, PPP, etc.).

With regards to dynamic SA establishment, all traf-
fic that traverses the bridge configured in the man-
ner described in section 3.4 causes SA acquisitions.
This is both undesirable and can have severe perfor-
mance implications. A mechanism for the adminis-
trator to specify which packet flows should require
IPsec protection (and thus cause an SA acquisition)
is necessary. We are currently working on this issue.

More work needs to be done with regards to the per-
formance implications of frequent IKE negotiations,
as might be the case when the bridge is protecting a
large network. Hardening against denial of service
attacks (by exploiting too-aggressive SA acquisition
rules) is also high in our to-do list.

The filtering bridge can also provide a transition
step for a “distributed firewall”-protected network,
as described in [1]. It may also be used in conjunc-
tion with a distributed firewall to provide protection
against low-level network attacks (those that a dis-
tributed firewall is not well-suited to counter), or to
protect legacy systems that cannot be modified to
support the required functionality. Very low-priced
systems (motherboard, processor, small disk, two
ethernet cards, moderate amount of memory) may
be used in such a configuration; such systems may

b2

also be used as “personal firewalls,” similar to var-
ious commercial products that have begun to make
their appearance in the market recently.

5 Conclusions

We have given an overview of the OpenBSD bridge
implementation, with our extensions for Layer-2 and
Layer-3 filtering (at the ethernet and IP layer, re-
spectively). For the latter, we used the existing ker-
nel packet filter mechanism, ipf. We further pre-
sented our integration of bridging with IPsec to
provide “virtual LAN” functionality, “bump-in-the-
wire” support, and a transparent security policy en-
forcement box. This latter configuration is shown
to offer significant flexibility to network administra-
tors, as it can be used in various modes of operation
to ensure traffic as well as host and network protec-
tion. Finally, we discussed the current implementa-
tion status and our plans for future work.

6 Acknowledgments

The bridge was originally developed as an under-
graduate independent study at the University of
North Carolina at Greensboro by Jason L. Wright
with Dr. Suzanne Lea as an advisor. The code
was contributed to the OpenBSD project and inte-
grated into the source tree prior to the 2.5 release
(May 1999).

The authors would also like to thank Theo de Raadt
and Jonathan Smith for their suggestions and sup-
port during the course of this work. Theo de Raadt
suggested many of the original concepts behind the
filtering bridge and the virtual LAN. This work was
partly sponsored by DARPA under grant F39502-
99-1-0512-MOD P0001.

7 Availability

All the software described in the paper is available
through the OpenBSD web page at:

http://www.openbsd.org/

8 Disclaimer

OpenBSD is based in Calgary, Canada. All individ-
uals doing cryptography-related work do so outside
countries that have limiting laws.

References

[1] S. M. Bellovin. Distributed Firewalls. ;login: mag-
azine, special issue on security, November 1999.

[2] Consultation Committee. X.509: The Directory
Authentication Framework. International Tele-
phone and Telegraph, International Telecommuni-
cations Union, Geneva, 1989.

[3] D. Eastlake and C. Kaufman. Dynamic Name Ser-
vice and Security. Internet RFC 2065, January
1997.

[4] Niklas Hallgvist and Angelos D. Keromytis. Imple-
menting Internet Key Exchange (IKE). In Proceed-
ings of the Annual USENIX Technical Conference,
June 2000.

[6] D. Harkins and D. Carrel. The internet key ex-
change (IKE). Request for Comments (Proposed
Standard) 2409, Internet Engineering Task Force,
November 1998.

[6] P. Karn and W. Simpson. Photuris: Session-key
management protocol. Request for Comments (Ex-
perimental) 2522, Internet Engineering Task Force,
March 1999.

[7] S.Kent and R. Atkinson. IP authentication header.
Request for Comments (Proposed Standard) 2402,
Internet Engineering Task Force, November 1998.

[8] S. Kent and R. Atkinson. IP encapsulating security
payload (ESP). Request for Comments (Proposed
Standard) 2406, Internet Engineering Task Force,
November 1998.

[9] S. Kent and R. Atkinson. Security architecture for
the internet protocol. Request for Comments (Pro-
posed Standard) 2401, Internet Engineering Task
Force, November 1998.

[10] A. D. Keromytis, J. Ioannidis, and J. M. Smith.
Implementing IPsec. In Proceedings of Global Inter-
net (GlobeCom) 97, pages 1948 — 1952, November
1997.

[11] Kirk McKusick, et. al. The Design and Implemen-
tation of the 4.4BSD Operation System. Addison
Wesley, 1996.

[12] RSA Laboratories. PKCS #1: RSA Encryption
Standard, version 1.5 edition, 1993. November.

[13]

[14]

[15]
[16]

Steven McCanne and Van Jacobson. A BSD packet
filter: A new architecture for user-level packet cap-
ture. In Proceedings of USENIX Winter Technical
Conference, pages 259-269, San Diego, California,
January 1993. Usenix.

D. McDonald, C. Metz, and B. Phan. PF_KEY Key
Management API, Version 2. Request for Com-
ments (Informational) 2367, Internet Engineering
Task Force, July 1998.

Digital Signature Standard, May 1994.

Internetworking Task Group of IEEE 802.1. In-
formation technology — telecommunication and in-
formation exchange between systems — local and
metropolitan area networks — common specifica-
tions — part 3: Media access control (mac) bridges.
Technical Report ISO/IEC Final DIS 15802-3,
IEEE P802.1D/D17, LAN MAN Standards Com-
mittee of the IEEE Computer Society, May 1998.

