
Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Porting OpenBSD on the MIPS64-based Octeon
Platforms

Paul Irofti
pirofti@openbsd.org

BSDCan, Ottawa
May 2014

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Outline

1 Introduction

2 Machine Memory

3 octrng(4)

4 octrtc(4)

5 brswphy(4)

6 octhci(4)

7 CFI

8 Conclusions

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

About Me

Who Am I?

Reverse Engineer (6 years in the AV industry)

anti-virus engines

emulators: static and dynamic analysis research

OpenBSD Hacker:

power management, ACPI

mips64: Loongson and Octeon

compat linux(8) maintainer

porter

Research Assistant and PhD student:

Faculty of Automatic Control and Computers at the
Polytechnic University of Bucharest

PhD on parallel signal processing algorithms using GPGPU
(OpenCL, CUDA)

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

About Me

My connection to Octeon

played with other mips64 ports in the past

mostly worked on the Loongson architecture

first contact while sitting next to jasper@ at t2k13

mentioned it in the undeadly report after the hackathon

article led to a kind donation from Diana Eichert

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

Dealing with U-Boot

After a bit of reading, the magic tftpboot’ing uboot commands are:

D-Link DSR-500 bootloader# dhcp

D-Link DSR-500 bootloader# tftpboot 0 bsd

D-Link DSR-500 bootloader# bootoctlinux ./bsd

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

Copyright Crash

Kernel crashed after copyright:

Copyright (c) 1982, 1986, 1989, 1991, 1993

The Regents of the University of California.

All rights reserved.

Copyright (c) 1995-2013 OpenBSD. All rights reserved.

http://www.OpenBSD.org

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

Octeon Memory

In-depth investigations pointed to the memory setup routines.
This is how Octeon memory is organized:

PA Chunks From To

1st 256 MB DR0 0000 0000 0000 0000 0000 0000 0FFF FFFF
2nd 256 MB DR1 0000 0004 1000 0000 0000 0004 1FFF FFFF
Over 512MB DR2 0000 0000 2000 0000 0000 0003 FFFF FFFF

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

First Encounter: Too small

The DSR-500 has 128MB of memory.

the smallest system memory so far

octeon memory init() assumed at least 256MB

BUG: start of the 2nd bank after 256MB
phys avail[1] = OCTEON DRAM FIRST 256 END;

realmem bytes -= OCTEON DRAM FIRST 256 END;

FIX: cap to realmem if less than 256MB
phys avail[1] = realmem byte

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

Userland

After the fix I got a big reward:

OpenBSD 5.4-current (GENERIC) #32:

Fri Aug 30 14:19:07 EEST 2013

[...]

scsibus0 at vscsi0: 256 targets

softraid0 at root

scsibus1 at softraid0: 256 targets

root device:

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

Dmesg

Inspecting the very short dmesg there were some obvious
problems:

octcf at iobus0 not configured

0:0:0: mem address conflict 0xf8000000/0x8000000

ukphy0 at cnmac0 phy 0

/dev/ksyms: Symbol table not valid.

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

Where to?

Going forward my plans were to:

enrich the platform by adding new drivers

add storage support through internal cf and umass

enable networking

help jasper@ to improve the 2nd-stage bootloader

make the port able to stand on its own

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

First Contact

Dissapointment

The SDK license made me sad:

This Software, including technical data, may be subject

to U.S. export control laws, including the U.S. Export

Administration Act and its associated regulations, and

may be subject to export or import regulations in other

countries.

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Random Number Generator

Warm-up driver

I decided to write a simple driver to get to know the platform.

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Random Number Generator

Why the RNG?

I chose the random-numbers generator because it seemed:

easy to initialize

simple output

clean integration with the OpenBSD random subsystem

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Random Number Generator

RNG Setup

Initialization is done through a control register:

read the control register

set the output flag

set the entropy flag

write-back the control register

The above should start producing randomness in a few seconds.

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Random Number Generator

Fetching

Random numbers are written in the entropy register.

read 8-bytes from the register address

feed it to add true randomness()

schedule another read after 10ms

That’s it!

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Random Number Generator

Lessons Learned

Obstacles:

endianess confusion when dealing with register addresses

required read after write when setting the control register

get 8-bytes, feed only 4 to the random subsystem

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Itching

NFS-booting was annoying me everytime with this:

WARNING: file system time much less than clock time

WARNING: CHECK AND RESET THE DATE!

It had to stop!

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Available clocks

Some boards have an RTC that can be used as a TOD clock:

DS1337 clock model

resolution of 1 second

provide gettime and settime routines

register them to be used as the system TOD clock

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Two-Wire Serial Interface

Time is read through the TWS registers:

uint64_t v:1; /* Valid bit */

uint64_t slonly:1; /* Slave Only Mode */

uint64_t eia:1; /* Extended Internal Address */

uint64_t op:4; /* Opcode field */

uint64_t r:1; /* Read bit or result */

uint64_t sovr:1; /* Size Override */

uint64_t size:3; /* Size in bytes */

uint64_t scr:2; /* Scratch, unused */

uint64_t a:10; /* Address field */

uint64_t ia:5; /* Internal Address */

uint64_t eop_ia:3; /* Extra opcode */

uint64_t d:32; /* Data Field */

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

How TWS Access Works

Operating the TOD clock:

set the address field to the RTC register

afterwards use current internal address across calls

set the operation type by setting/clearing the read flag

read from or write to the data field

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Reads(1)

1st step:

set RTC register address

set the read bit

set the valid bit

set op to use the current address if a read was done before

write the TWS register

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Reads(2)

2nd step:

read-back the TWS register

keep reading until the valid bit is cleared

if cleared, the operation was completed

fetch clock data from the 1st byte in the data field

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Writes(1)

1st step:

set RTC register address

clear the read bit

set the valid bit

fill the data field

write the TWS register

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Writes(2)

2nd step:

read-back the TWS register

keep reading until the valid bit is cleared

do an extra read-back after the operation was completed

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

RTC Format

The clock information is BCD-coded as follows:

tt->year = ((tod[5] & 0x80) ? 100 : 0) + FROMBCD(tod[6]);

tt->mon = FROMBCD(tod[5] & 0x1f);

tt->day = FROMBCD(tod[4] & 0x3f);

tt->dow = (tod[3] & 0x7);

tt->hour = FROMBCD(tod[2] & 0x3f);

tt->min = FROMBCD(tod[1] & 0x7f);

tt->sec = FROMBCD(tod[0] & 0x7f);

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

TOD Routines

The settime and gettime routines:

pack/unpack the time data into/from BCD form

read/write each packet through the TWS registers

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Real-time Clock

Issues

The TWSI is very fragile and needs a lot of integrity checks.

Besides, some models have an RTC clock:

D-Link DSR-500

Portwell CAM-0100.

Others don’t:

Ubiquiti Networks EdgeRouter Lite.

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Broadcom PHY

Njetwork

Even though I used tftpboot and NFS-root on boot...

ifconfig cnmac0

cnmac0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>

lladdr 00:de:ad:20:75:00

priority: 0

media: Ethernet autoselect (none)

status: no carrier

inet 192.168.1.9 netmask 0xffffff00 broadcast

ping k.ro

ping: unknown host: k.ro

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Broadcom PHY

BCM53XX

Missing Broadcom PHY driver for the chip 53XX-family

resulted in cnmac0 at ukphy

looked at OpenWrt for the proper registers

wrote a minimal PHY driver with dumb-mode only switch
support

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Broadcom PHY

Status Routine

The key was the status PHY routine which reads the:

link state

duplex mode

port’s speed

via corresponding registers from the status page.

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Broadcom PHY

Reads(1)

1st step:

set the page number if the current one differs

set the register address

read-back to check for operation completion

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Broadcom PHY

Reads(2)

Once the page-register tuple is in place:

read 2 bytes from the first data register

if needed go on with the 2nd, 3rd and 4th data registers

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Broadcom PHY

Results

With that in place the network seems better:

ifconfig cnmac0

cnmac0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>

lladdr 00:de:ad:20:75:00

priority: 0

groups: egress

media: Ethernet autoselect (1000baseT master)

status: active

inet 192.168.1.9 netmask 0xffffff00

ping k.ro

PING k.ro (194.102.255.23): 56 data bytes

64 bytes from 194.102.255.23: icmp_seq=0 time=60.132 ms

64 bytes from 194.102.255.23: icmp_seq=1 time=63.555 ms

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Broadcom PHY

Switch Support

In the future I plan to add switch support.

Existing kernel switch frameworks:

ZRouter solution from Aleksandr Rybalko

IIJ solution from Kazuya Goda

Waiting for the IIJ framework to be made public before deciding.

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

USB Host Controller

Existing Work

Cavium SDK

IIJ driver for the CN30XX boards

WIP driver I wrote that fries USB sticks

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

USB Host Controller

My Progress So Far

clock setup

host-mode setup

core setup

dma setup

part of the interrupt routine

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

USB Host Controller

Interrupt Routine

Almost done:

host channel interrupts

issues: assumes single USB port

device disconnect interrupts

issues: doesn’t callback

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

USB Host Controller

Show-Stoppers

can’t use the SDK: U.S. export control

SDK and IIJ register poking logic is completely different

can’t reuse IIJ’s code as it doesn’t work on my D-Link

USB is hard

USB w/o documentation is harder

writing a driver requires time, which is the worst

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Compact Flash Interface

Flash Memory

OpenBSD doesn’t support the DSR-500 flash memory:

octcf at iobus0 base 0x1d000800 irq 0 not configured

FreeBSD does through CFI:

cfi0: <AMD/Fujitsu - 32MB> on ciu0

cfi0:

cfi0: [256x128KB]

cfid0 on cfi0

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Compact Flash Interface

Plans

Discussed with David Gwynne (dlg@):

write a small ATA driver

plug it into the rest of the system via atascsi

no multiple concurrent commands

no port multipliers

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Compact Flash Interface

Implementation

Writing a driver was slower than I expected:

it’s my first disk driver

atascsi has too many abstractions

the reference drivers ahci(4) and sili(4) are complex

cf doesn’t even do dma, it does bus space reads/writes

wdc(4)/pciide(4) is messy

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

Compact Flash Interface

Work In Progress

I just started working on the driver. Unsure about:

mimicking the FreeBSD abstraction: cfid → cfi → atascsi

keeping the driver MD or making it MI

supporting the entire CFI specification

including the Intel mess

StrataFlash?

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

OpenBSD/Octeon

Mostly Harmless

Conclusions

a lot of work was put into OpenBSD/Octeon

lack of documentation is slowing progress

SDK copyright capped the pace even further

open problems: USB, switch framework, CFI

work continues to make this port complete

Introduction Machine Memory octrng(4) octrtc(4) brswphy(4) octhci(4) CFI Conclusions

OpenBSD/Octeon

So Long, and Thanks for All the Fish

Questions?

	Introduction
	Machine Memory
	octrng(4)
	octrtc(4)
	brswphy(4)
	octhci(4)
	CFI
	Conclusions

