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The goal
Produce a minimal well-written and well-understood code base
to be able to run in Amazon EC2 and fix potential problems
for our customers.



The challenge
Produce a minimal well-written and well-understood code base
to be able to run in Amazon EC2 and fix potential problems
for our customers.
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Requirements
Need to be able to:

▶ boot: already works!
▶ mount root partition: already works!
▶ support SMP: fixed shortly
▶ perform “cloud init”: requires PV networking driver
▶ login into the system via SSH... Same thing.
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▶ Huge in size

“du -csh” reports 1.5MB vs. 124KB in OpenBSD as of 5.9
35 C files and 83 header files vs. 4 C files and 2 headers



Outlook on the FreeBSD implementation

▶ Huge in size
▶ Needlessly complex

Overblown XenStore API, interrupt handling, …
Guest initialization, while technically simple, makes you chase
functions all over the place.



Outlook on the FreeBSD implementation

▶ Huge in size
▶ Needlessly complex
▶ Clash of coding practices



Outlook on the FreeBSD implementation

▶ Huge in size
▶ Needlessly complex
▶ Clash of coding practices

Lots of code has been taken verbatim from Linux (where
license allows)
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Outlook on the FreeBSD implementation

▶ Huge in size
▶ Needlessly complex
▶ Clash of coding practices
▶ Questionable abstractions

Code-generating macros, e.g. DEFINE_RING_TYPES.
Macros to “facilitate” simple producer/consumer arithmetics,
e.g. RING_PUSH_REQUESTS_AND_CHECK_NOTIFY and friends.
A whole bunch of things in the XenStore: xs_directory
dealing with an array of strings, use of sscanf to parse single
digit numbers, etc.



Porting plans…
…were scrapped in their infancy.



Single device driver model
In OpenBSD a pvbus(4) driver performs early hypervisor
detection and can set up some parameters before attaching
the guest nexus device:

xen0 at pvbus?

The xen(4) driver performs HVM guest initialization and
serves as an attachment point for PVHVM device drivers, such
as the Netfront, xnf(4):

xnf* at xen?



HVM guest initialization

▶ The hypercall interface



Hypercalls
Instead of defining a macro for every type of a hypercall we
use a single function with variable arguments:

xen_hypercall(struct xen_softc *, int op,
int argc, ...)

Xen provides an ABI for amd64, i386 and arm that we need to
adhere to when preparing arguments for the hypercall.



The hypercall page
Statically allocated in the kernel code segment:

.text

.align NBPG

.globl _C_LABEL(xen_hypercall_page)
_C_LABEL(xen_hypercall_page):

.skip 0x1000, 0x90



The hypercall page

(gdb) disassemble xen_hypercall_page
<xen_hypercall_page+0>: mov $0x0,%eax
<xen_hypercall_page+5>: sgdt
<xen_hypercall_page+6>: add %eax,%ecx
<xen_hypercall_page+8>: retq
<xen_hypercall_page+9>: int3
...
<xen_hypercall_page+32>: mov $0x1,%eax
<xen_hypercall_page+37>: sgdt
<xen_hypercall_page+38>: add %eax,%ecx
<xen_hypercall_page+40>: retq
<xen_hypercall_page+41>: int3
...
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HVM guest initialization

▶ The hypercall interface
▶ The shared info page
▶ Interrupt subsystem



Interrupts

▶ Allocate an IDT slot

Pre-defined value of 0x70 (start of an IPL_NET section) is used
at the moment.



Interrupts

▶ Allocate an IDT slot
▶ Prepare interrupt, resume and recurse vectors

Xen upcall interrupt is executing with an IPL_NET priority.
Xintr_xen_upcall is hooked to the IDT gate.
Xrecurse_xen_upcall and Xresume_xen_upcall are hooked
to the interrupt source structure to handle pending Xen
interrupts.



Interrupts

▶ Allocate an IDT slot
▶ Prepare interrupt, resume and recurse vectors
▶ Communicate the slot number with the hypervisor

A XenSource Platform PCI Device driver, xspd(4), serves as a
backup option for delivering Xen upcall interrupts if setting up
an IDT callback vector fails.



Interrupts
▶ Allocate an IDT slot
▶ Prepare interrupt, resume and recurse vectors
▶ Communicate the slot number with the hypervisor
▶ Implement API to (dis-)establish device interrupt handlers and

mask/unmask associated event ports.

int xen_intr_establish(evtchn_port_t,
xen_intr_handle_t *, void (*handler)(void *),
void *arg, char *name);

int xen_intr_disestablish(xen_intr_handle_t);
void xen_intr_mask(xen_intr_handle_t);
int xen_intr_unmask(xen_intr_handle_t);



Interrupts

▶ Allocate an IDT slot
▶ Prepare interrupt, resume and recurse vectors
▶ Communicate the slot number with the hypervisor
▶ Implement API to (dis-)establish device interrupt handlers and

mask/unmask associated event ports.
▶ Implement events fan out

Xintr_xen_upcall(xen_intr()):
while(pending_events?)

xi = xen_lookup_intsrc(event_bitmask)
xi->xi_handler(xi->xi_arg)
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Almost there: XenStore

▶ Shared ring with a producer/consumer interface
▶ Driven by interrupts
▶ Exchanges ASCII NUL-terminated strings
▶ Exposes a hierarchical filesystem-like structure

device/
device/vif
device/vif/0
device/vif/0/mac = "06:b1:98:b1:2c:6b"
device/vif/0/backend =

"/local/domain/0/backend/vif/569/0"



Almost there: XenStore
References to other parts of the tree, for example, the backend
/local/domain/0/backend/vif/569/0:

domain handle uuid
script state frontend
mac online frontend-id
type feature-sg feature-gso-tcpv4
feature-rx-copy feature-rx-flip hotplug-status



Almost there: Device discovery and attachment



Enter Netfront
...or not!



Enter Netfront
Grant Tables are required to implement receive and transmit
rings.
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What’s in a ring?

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor 5

Producer

Consumer



What’s in a ring?



bus_dma(9)
Since its inception, bus_dma(9) interface has unified different
approaches to DMA memory management across different
architectures.



bus_dma(9): Preparing a transfer
▶ bus_dmamap_create to specify DMA memory layout

struct bus_dmamap {
...
void *_dm_cookie; // <-- cookie!
bus_size_t dm_mapsize;
int dm_nsegs;
bus_dmamap_segment_t dm_segs[1];

};
typedef struct bus_dmamap_segment {

bus_addr_t ds_addr;
bus_size_t ds_len;
...

} bus_dmamap_segment_t;



bus_dma(9): Preparing a transfer

▶ bus_dmamap_create to specify DMA memory layout
▶ bus_dmamem_alloc to allocate physical memory



bus_dma(9): Preparing a transfer

▶ bus_dmamap_create to specify DMA memory layout
▶ bus_dmamem_alloc to allocate physical memory
▶ bus_dmamem_map to map it into the KVA



An example of buffer spanning multiple pages



bus_dma(9): Preparing a transfer

▶ bus_dmamap_create to specify DMA memory layout
▶ bus_dmamem_alloc to allocate physical memory
▶ bus_dmamem_map to map it into the KVA
▶ bus_dmamap_load to connect allocated memory to the layout



Buffer loaded into the segment map



bus_dma(9): Preparing a transfer

▶ bus_dmamap_create to specify DMA memory layout
▶ bus_dmamem_alloc to allocate physical memory
▶ bus_dmamem_map to map it into the KVA
▶ bus_dmamap_load to connect allocated memory to the layout
▶ signal the other side to start the DMA transfer



bus_dma(9): Transfer completion

▶ bus_dmamap_unload to disconnect the memory
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bus_dma(9): Transfer completion

▶ bus_dmamap_unload to disconnect the memory
▶ bus_dmamem_unmap to unmap the memory from the KVA
▶ bus_dmamem_free to give the memory back to the system
▶ bus_dmamap_destroy to destroy the DMA layout



Netfront RX ring
Consists of a 64 byte header and a power-of-2 number of 8
byte descriptors that fit in one page of memory.

#define XNF_RX_DESC 256
struct xnf_rx_ring {

uint32_t rxr_prod;
uint32_t rxr_prod_event;
uint32_t rxr_cons;
uint32_t rxr_cons_event;
uint32_t rxr_reserved[12];
union xnf_rx_desc rxr_desc[XNF_RX_DESC];

} __packed;



Netfront RX ring
Each descriptor can be a “request” (when announced to the
backend) or a “response” (when receive is completed):

union xnf_rx_desc {
struct xnf_rx_req rxd_req;
struct xnf_rx_rsp rxd_rsp;

} __packed;



Netfront RX ring
Descriptor contains a reference (rxq_ref) of a page sized
memory buffer:

struct xnf_rx_req {
uint16_t rxq_id;
uint16_t rxq_pad;
uint32_t rxq_ref;

} __packed;



bus_dma(9) usage for the Netfront RX ring
Create a shared page of memory for the ring data:

▶ bus_dmamap_create a single entry segment map



bus_dma(9) usage for the Netfront RX ring
Create a shared page of memory for the ring data:

▶ bus_dmamap_create a single entry segment map
▶ bus_dmamem_alloc a single page of memory for descriptors



bus_dma(9) usage for the Netfront RX ring
Create a shared page of memory for the ring data:

▶ bus_dmamap_create a single entry segment map
▶ bus_dmamem_alloc a single page of memory for descriptors
▶ bus_dmamem_map the page and obtain a VA



bus_dma(9) usage for the Netfront RX ring
Create a shared page of memory for the ring data:

▶ bus_dmamap_create a single entry segment map
▶ bus_dmamem_alloc a single page of memory for descriptors
▶ bus_dmamem_map the page and obtain a VA
▶ bus_dmamap_load the page into the segment map



bus_dma(9) usage for the Netfront RX ring
Now we can communicate the location of this page with a
backend, but first we need to create packet maps for each
descriptor (256 in total) so that we can connect memory
buffers (mbuf clusters) with references in the descriptor.
We don’t need to allocate memory for buffers since they’re
coming from the mbuf cluster pool.



bus_dma(9) usage for the Netfront RX ring
Whenever we need to put the cluster on the ring we just need
to perform a bus_dmamap_load operation on an associated
DMA map and then set the descriptor reference to the value
stored in the DMA map segment...
Right?



bus_dma(9) usage for the Netfront RX ring
Whenever we need to put the cluster on the ring we just need
to perform a bus_dmamap_load operation on an associated
DMA map and then set the descriptor reference to the value
stored in the DMA map segment...
Right? Wrong!

RX and TX descriptors use references, not physical addresses!



Grant Table reference



Grant Table entry
Grant Table entry version 1 contains a frame number, flags
(including permissions) and a domain number to which the
access to the frame is provided.



Grant Table entry
Grant Table entry version 1 contains a frame number, flags
(including permissions) and a domain number to which the
access to the frame is provided.
If only we could add a translation layer to the bus_dma(9)
interface to convert between physical address and a frame
number.



bus_dma(9) and Grant Tables
Luckily bus_dma(9) interface allows us to use custom
methods:

struct bus_dmamap_tag xen_bus_dmamap_tag = {
NULL, // <-- another cookie!
xen_bus_dmamap_create, xen_bus_dmamap_destroy,
xen_bus_dmamap_load, xen_bus_dmamap_load_mbuf,
NULL, NULL, xen_bus_dmamap_unload,
xen_bus_dmamap_sync, _bus_dmamem_alloc,
NULL, _bus_dmamem_free,
_bus_dmamem_map, _bus_dmamem_unmap,

};



Xen bus_dma(9) interface
After creation of the DMA segment map structure via
_bus_dmamap_create, we can create an additional array for
the purpose of mapping Grant Table references to physical
addresses of memory segments loaded via bus_dmamap_load
and set it to be a DMA map cookie!



Xen bus_dma(9) interface
After creation of the DMA segment map structure via
_bus_dmamap_create, we can create an additional array for
the purpose of mapping Grant Table references to physical
addresses of memory segments loaded via bus_dmamap_load
and set it to be a DMA map cookie!
We have to preallocate Grant Table references at this point so
that we can perform bus_dmamap_load and
bus_dmamap_unload sequences fast. Since we create DMA
maps in advance, xen_grant_table_alloc can take time to
increase the number of Grant Table pages if we’re running low
on available references.
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When we’re ready to put the buffer on the ring we call
bus_dmamap_load that populates the DMA map segment array
with physical addresses of buffer segments.
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entries that we have preallocated and set appropriate
permission flags via xen_grant_table_enter.



Xen bus_dma(9) interface
When we’re ready to put the buffer on the ring we call
bus_dmamap_load that populates the DMA map segment array
with physical addresses of buffer segments.
Once it’s done we can punch those addresses into Grant Table
entries that we have preallocated and set appropriate
permission flags via xen_grant_table_enter.
We record physical addresses in our reference mapping array
and swap values in the DMA map segment array to Grant
Table references. This allows the Netfront driver to simply use
these values when setting up ring descriptors.



Xen bus_dma(9) interface
During bus_dmamap_unload we perform the same operations
backwards: xen_grant_table_remove clears the Grant Table
entry, we swap physical addresses back and call into the
system to finish unloading the map.
If we wish to destroy the map, bus_dmamap_destroy will
deallocate Grant Table entries via xen_grant_table_free and
then destroy the map itself.
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XenStore API.
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Announcing Netfront rings
In order to announce locations of RX and TX rings, Netfront
driver needs to set a few properties in its “device” subtree via
XenStore API.
A Grant Table reference for the RX ring data needs to be
converted to an ASCII string and set as a value for the
“rx-ring-ref” property.
TX ring location is identified by the backend with the
“tx-ring-ref” property.
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knowledge of the EC2 cloud to be able to obtain an SSH key
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Operation in the Amazon EC2
Amazon Machine Image (AMI) is required to contain some
knowledge of the EC2 cloud to be able to obtain an SSH key
during the instance creation.
Since the information is provided by the EC2 via an internal
HTTP server, it’s required that the first networking interface
comes up on startup with a DHCP configuration and fetches
the SSH key.
This procedure is called “cloud-init” and obviously requires
some additions and adjustments to the OpenBSD boot
procedure.



Operation in the Amazon EC2

▶ Public images of 5.8-current snapshots were provided regularly
by Reyk Flöter (reyk@) and Antoine Jacoutot (ajacoutot@) in
several “availability zones”.



Operation in the Amazon EC2

▶ Public images of 5.8-current snapshots were provided regularly
by Reyk Flöter (reyk@) and Antoine Jacoutot (ajacoutot@) in
several “availability zones”.

▶ Antoine has created a few scripts to automate creation and
upload of OpenBSD images to the EC2 using ec2-api-tools as
well as perform minimal “cloud-init” on the VM itself.



Running under Qubes OS

▶ Booted fine but the network didn’t work



Running under Qubes OS

▶ Booted fine but the network didn’t work
▶ Turned out that Qubes “chains” VMs

/local/domain/3/device/vif/0/backend-id = "2"



Running under Qubes OS

▶ Need to pass down the backend domain number to the
xen_grant_table_enter



Running under Qubes OS

▶ Need to pass down the backend domain number to the
xen_grant_table_enter

▶ Need to bind the event channel to the correct remote domain



Running under Qubes OS
Grant Table entries are not given back to us!

xnf0: grant table reference 9 is held by domain 2



Running under Qubes OS
Grant Table entries are not given back to us!

xnf0: grant table reference 9 is held by domain 2

Fixed by taking Domain ID field in account when doing CAS



Running under Qubes OS

▶ VM configuration is done through shared memory setup
accessed via libxc and libs.



Running under Qubes OS

▶ VM configuration is done through shared memory setup
accessed via libxc and libs.

▶ libxc and libs issue hypercalls via a device node accessible by
the root user.
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Future work

▶ Support for the PVCLOCK timecounter
▶ Support for suspend and resume
▶ Driver for the Blkfront interface
▶ Support for the PCI pass-through



Thank you!
I’d like to thank Reyk Flöter and Esdenera Networks GmbH for
coming up with this amazing project, support and letting me
have a freedom in technical decisions.
I’d also like to thank OpenBSD developers, especially Reyk
Flöter, Mark Kettenis, Martin Pieuchot, Antoine Jacoutot,
Mike Larkin and Theo de Raadt for productive discussions and
code reviews.
Huge thanks to all our users who took their time to test,
report bugs, submit patches and encourage development.
Special thanks to Wei Liu and Roger Pau Monné from Citrix
for being open to questions and providing valuable feedback as
well as other present and past contributors to the FreeBSD
port. Without it, this work might not have been possible.



Question Time

Questions?



Thank you for attending the talk!


