Design and Verification
of the
TLS 1.3 Handshake State Machine
in LibreSSL

Theo Buehler
tb@openbsd.org

BSDCan — May 18, 2019


mailto:tb@openbsd.org

TLS Basics

TLS stands for Transport Layer Security.
Successor of the SSL (Secure Socket Layer) protocol.

Client wants to connect to a server.
» Establishes a connection
» Negotiates connection with server (TLS handshake)
» Application data

» End of connection

We will take a closer look at the handshake later on.



History

SSL protocol developed in the mid nineties by Netscape.
> Legacy versions:
> SSL 1.0 (never released)
> SSL 2.0 (1995-2011)
> SSL 3.0 (1996-2015)
> TLS 1.0 (1999-20207)
> TLS 1.1 (2006-20207)

» Current versions:

> TLS 1.2 RFC 5246 (2008), refined in RFC 6176 (2011).
> TLS 1.3 RFC 8446 (2018).


https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6176
https://tools.ietf.org/html/rfc8446

TLS 1.2 vs TLS 1.3

TLS 1.2 is still fine.

TLS 1.3 brings some improvements:
P Legacy algorithms removed
» Better elliptic curve support (no point format negotiation)
» Forward secrecy
» Optimized handshake state machine
» Much more...

Summary: improved cryptography and performance.



The TLS 1.2 handshake

The TLS 1.2 handshake takes two full round trips:

1. Client initiates handshake: ClientHello.

2. Server responds:
ServerHello, Certificate, ServerKeyExchange, ServerHelloDone

3. Client responds:
ClientKeyExchange, ChangeCipherSpec, Finished

4. Server finishes up:
ChangeCipherSpec, Finished

This usually takes 300 — 500 milliseconds.



The TLS 1.3 handshake

The TLS 1.3 handshake takes only one round trip:

1. The ClientHello includes the client key exchange.

2. Server sends ServerHello, Certificate, CertificateVerify,
ServerFinished.

3. Client sends ClientFinished
Takes about 200 — 350 milliseconds.



Visualization

CLIENT_HELLO

SERVER_CERTIFICATE
SERVER_FINISHED

APPLICATION_DATA



Basic design of the state machine

Fundamental observation: while the RFC's state machine has a
loop, it can be modeled on a directed acyclic graph (DAG).

Therefore it is possible to enumerate all legal paths.

Linearized in a static table.

Design based on s2n's state machine.



Main property

At every point we know what message comes next and we can call
a specialized handler.

Almost... After the encrypted extensions there is no way to know
whether the server will send a certificate request or a certificate
message. Needs an ugly workaround.

By design, we are safe from out-of-order messages (cf. libssh).



The message types

enum tlsl13_message_type {
INVALID ,
CLIENT_HELLO,
SERVER_HELLO,
CLIENT_HELLO_RETRY,

APPLICATION_DATA,
TLS13_.NUM_MESSAGE_TYPES,



The handshake actions

Every message type has an associated action:

struct tlsl3_handshake_action {
uint8_t handshake_type;
uint8_t sender;
uint8_t handshake_complete;
uint8_t preserve_transcript_hash;

int (xsend)(struct tlsl3_ctx x*ctx);
int (xsent)(struct tlsl3_ctx *ctx);
int (xrecv)(struct tlsl3_ctx *ctx);



Example:

[CLIENT_HELLO] = {
.handshake_type = TLS13_.MT_CLIENT_HELLO,
.sender = TLS13_HS_CLIENT,
.send = tlsl3_client_hello_send ,
.recv = tlsl3_client_hello_recv ,



The handshakes table

enum tls1l3_message_type handshakes]|]
[TLS13.NUM_MESSAGE_TYPES] = {

[NEGOTIATED | WITHOUT.CR] = {
CLIENT_HELLO,
SERVER_HELLO,
SERVER_ENCRYPTED_EXTENSIONS,
SERVER_CERTIFICATE,
SERVER_CERTIFICATE_VERIFY,,
SERVER_FINISHED
CLIENT_FINISHED,
APPLICATION_DATA,



Advancing the state machine

Simply increment a value:

int

tlsl3_handshake_advance_state_machine
(struct tlsl3_ctx =ctx)

{

if (++ctx—>handshake_stage.message_number

>= TLS13_.NUM_MESSAGE_TYPES)
return 0;

return 1;



Regress tests

The handshakes table is generated by code in the regress test.

$ cd /usr/src/regress/lib/libssl/handshake
$ make print

Tests are run daily by bluhm® on his regress machines.



Visualization

Regress target to generate graphics in various formats. Uses the
math /graphviz package (thanks, edd@).

$ cd /usr/src/regress/lib/libssl/handshake
$ doas pkg_add graphviz
$ make handshake.png



References

> RFC 8446

» A Detailed Look at RFC 8446

» Source code: lib/libssl, regress/lib/libssl/handshake
» Tweet thread by Colm MacCarthaigh


https://tools.ietf.org/html/rfc8446
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://cvsweb.openbsd.org/src/lib/libssl/
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/regress/lib/libssl/handshake/
https://twitter.com/colmmacc/status/1053031892734242817?lang=en

Status of TLS 1.3 in LibreSSL

About 60% there.

The client side is mostly done

Work on the server side has not yet started



Thanks

The entire OpenBSD team. In particular:
» daniel@, deraadt@
> beck®, bcook®, inoguchi®, jsing@
» bluhm@
» schwarze©
» sthen®

Finally, | would like to thank my employer, ARCATrust SA, for
supporting part of my work on TLS 1.3.



