
SCSI Multipathing in 
OpenBSD
David Gwynne <dlg@openbsd.org>

Monday, 30 September 13



Introduction
• who am I?

• what's the problem?

• what was the problem in OpenBSD?

• who has already solved it and how?

• how did I solve it?

Monday, 30 September 13



Who am I?
• Infrastructure Architect in the Faculty of 

Engineering, Architecture and Information 
Technology at The University of Queensland in 
Australia

• tl;dr: I'm dlg@uq.edu.au in EAIT at UQ

• a core developer^W^Wrecent slacker in OpenBSD

Monday, 30 September 13



host

ahci0

sd0 cd0

What's the problem?
• we all have something like this:

Monday, 30 September 13



What's the problem?
• ... or if we're lucky something like this:

host

enclosure

sd0 RAID10

port1port0

m�i0ahci0

cd0

disk0 disk1 disk2 disk3

Monday, 30 September 13



What's the problem?
• in both those cases the hosts have adapters that 

wired straight to to SCSI devices

• the RAID controller hides the physical 
complexity

• the SCSI you see is only visible on one adapter

• but what if we replaced that mfii (hardware RAID) 
with an mpii (vanilla SAS adapter)?

Monday, 30 September 13



What's the problem?
host

enclosure

mpii

portport

disk disk disk disk

Monday, 30 September 13



What's the problem?
• now we see each disk twice

• a single physical disk will attach as two 
separate sd(4) instances in OpenBSD

• once per path

• that is the problem

• so what does that mean?

• and what can we do with or about it?

Monday, 30 September 13



SCSI Basics
• SCSI is a family of standards defined by T10

• roughly split between commands and transports

• commands are the messages between initiators 
(hosts) and logical units (eg, disks, tape drives)

• transports are the wires and stuff you run the 
commands over

Monday, 30 September 13



SCSI Commands
• surprisingly sane

• separate command and data payload

• only the initiator (client or host) sends 
commands to LUs (server or device)

• commands are stateless

• targets can complete commands with extra info 
called sense data

Monday, 30 September 13



SCSI Transports
• commands sit on top of transport protocols like 

SPI, FC, SAS, iSCSI, USB, FireWire, ATAPI, etc

• or a RAID implementation

• or an emulation/translation layer (eg, SATL)

• surprisingly transparent to the command layer

• except for USB and ATAPI

Monday, 30 September 13



SCSI Topologies
• the simplest is a target plugged into an initiator

• but...

• a computer can have multiple SCSI adapters

• a adapters and disks can have multiple ports

• you can put switches in between them

• you can put RAID in with a box full of disks

• that RAID can be "highly available"

Monday, 30 September 13



SCSI Topologies
• yet SCSI as a protocol only cares about links 

between initiators and a logical units

• SBC/RBC/SES etc don't really care

• T10 didn't really address this until recently

• so multiple paths are a so"ware problem

• multipath is historically expensive, complicated, 
and very proprietary

• OpenBSD just isn't in that space

Monday, 30 September 13



SCSI in OpenBSD
• "Originally written by Julian Elischer for TRW 

Financial Systems for use under the MACH(2.5) 
operating system"

• from 1992 or earlier - this comment still exists

• largely unchanged in OpenBSD for 15 or 17 years

• assumed LUs were only visible to a single adapter 

• the SCSI stack was cut into three layers: adapters, 
midlayer, and targets

Monday, 30 September 13



SCSI Adapters
• attaches the midlayer to hardware controllers

• or SCSI command "sinks"

• takes SCSI commands from the midlayer and 
moves them on and off the hardware

• isn't required to maintain target state

• really just command transport

Monday, 30 September 13



The SCSI Midlayer
• appears as scsibus(4) in the device tree

• target probing/attachment

• basic management of openings per LU

• API for command submission

• biased to block I/O

• completely synchronous unless you were doing 
block I/O

• grew hotplug and different sized busses

Monday, 30 September 13



SCSI targets
• target drivers (sd/cd/st/etc) got support for 

modern commands (eg, big read/writes, read 
capacity 16, etc)

• ses was replaced with new ses/sa"e drivers

• had to grow hotplug like the midlayer

• ...but everything worked pretty well so didn't 
need fixing and nothing significant changed

Monday, 30 September 13



Multipath gear
• at my job I get to replace expensive, complicated, 

and very proprietary equipment, and keep the 
old bits as toys

• I get to play with a lot of "big" hardware and a 
handful of different operating systems

• multipath gear is relatively cheap now

• iSCSI, SAS, and 2nd hand FC gear is easy to get, 
but you have to want it

Monday, 30 September 13



Multipath gear
• I decommissioned an EMC CX-500 and then a 

StorageTek STK6140 (both FC)

• sun servers generally don't need RAID because 
Solaris is good

• I have spare v880s with two FC loops

• we've bought a Dell MD3000i and MD3200i

• lots of JBODs with redundant SAS backplanes

• accepted old FC kit and using bits as JBODs now

Monday, 30 September 13



What do others do?
• "serious" operating systems have proper stacks

• wikipedia has a list

• however, the ones I'm going to talk about

• GEOM_MULTIPATH and GEOM_FOX in FreeBSD

• dm-mpio in Linux (and NetBSD?)

• mpxio and scsi_vhci in Solaris

Monday, 30 September 13



GEOM Multipathing
• works at the block level - no SCSI knowledge

• the same LU will appear multiple times out of the 
SCSI layer as separate GEOM instances

• GEOM will recognise this and consume all the 
paths, and will make a single producer appear

• Only one path is used until it goes away or fails IO

Monday, 30 September 13



GEOM Multipathing
• I can't see a significant difference between 

MULTIPATH and FOX from the documentation

• GEOM requires a label on disk to recognise 
multiple paths, doesn't use hardware/LU IDs

• the hardware can tell you this stuff, requiring a 
human to press buttons makes it error prone 
and harder than it should be to use

• some hardware will accept I/O on secondary 
controllers without errors, but go slower

Monday, 30 September 13



dm-mpio
• works at the block layer again

• but issues SCSI commands to paths (via ioctl)

• has vendor specific code to make decisions

• checkers ask if the path can accept I/O

• prioritizers ask how good a path is

• will use all available paths for I/O and do failover 
and failback etc

Monday, 30 September 13



GEOM and dm
• working at the block layer means only block 

devices get multipathing

• enclosures, tapes, libraries, etc miss out

• relies on I/O failure or path removal for failover

• I/O failure can mean more than a bad path

• however, doesn't require more from a stack

• if block I/O, hotplug, and failure handling are 
there, then GEOM and dm-mpio should be fine

Monday, 30 September 13



mpxio and scsi_vhci
• Multiplexed I/O and SCSI Virtual Host Controller 

Interface

• multipathing done at the SCSI layer, not block

• scsi_vhci acts like a normal SCSI adapter driver in 
the Solaris kernel

• SCSI requests against scsi_vhci end up in mpxio 
which routes them to paths on real adapters

Monday, 30 September 13



mpxio
• real adapter drivers have to be modified to 

support mpxio

• mpxio requires alternate hotplug and command 
handling to normal SCSI stack

• new devices get presented to mpxio first which 
can decline taking them

• alternate SCSI command paths

Monday, 30 September 13



mpxio
• mpxio builds groups of paths and handles 

scheduling of I/O within those groups

• vendor specific handling is implemented in 
modules which a third party can supply

• the modules handle claiming of paths, testing 
of paths, interpretation of sense data, path 
prioritisation, and activation of paths

Monday, 30 September 13



Multipath in OpenBSD
• so I had equipment and interest

• but not a lot of time :(

• I started in 2008 and "finished" it a month ago

• but effectively rewrote most of the SCSI midlayer 
along the way and touched most SCSI adapters

• mostly inspired by mpxio with help from dm-
mpio

Monday, 30 September 13



SCSI Device IDS - devids
• modern SCSI devices provide identifiers via VPD 

page 83 (or we fake them with serials or bus IDs)

• made up of a type and a buffer, eg

• naa.500000e010902de0

• t10.ATA_ST3320620AS_5QF075CF

• serial.0781556b420F0AC34077

• a LU will present the same devid no matter where 
or how many times it gets attached

Monday, 30 September 13



mpath(4)
• a virtual SCSI adapter (like scsi_vhci)

• presents a single SCSI device to the kernel

• sends commands down paths

• an API for paths to register with (along with a 
bunch of callbacks)

• path registration is voluntary (ie, mpath 
doesn't go and look for paths itself)

• relies on devids to identify and collect paths

Monday, 30 September 13



mpath(4)
• I did the original mpath at f2k9

• had the midlayer intercept paths and give them 
to mpath before normal autoconf

• easy support for symmetric access devices

• had to special case a bunch of stuff in attach/
detach paths, but it worked and was reliable

• started on LSI/Engenio support then realised I 
was rewriting autoconf inside scsibus(4)

Monday, 30 September 13



mpath path drivers
• vendor/device specific knowledge is now 

implemented as a traditional device driver

• eg sym(4), rdac(4), hds(4), emc(4)

• uses autoconf foo_match() to claim a path

• path drivers implement the callbacks mpath 
needs to work with too 

• foo_attach() registers the device as a path with 
mpath_attach_path()

Monday, 30 September 13



mpath stack

Hardware

Fabric

Adapter

Midlayer

Device

disk0

SAS

disk1 disk2

SATA

cdrom

mpi0 mpi1 ahci0

sd0 sd1 sym0

mpath0

sym1 sym2 sym3 sd2 cd0

scsibus0 scsibus1 scsibus2 scsibus3

Monday, 30 September 13



mpath vs the midlayer
• at f2k9 I discovered that the synchronous 

behaviour of the API the SCSI midlayer provided 
was really annoying, almost soul destroying

• mpath(4) acts as a proxy

• requests to it are done by issuing new requests 
over paths with lots of copied values

• to get async or concurrent commands I would 
have had to reuse or fake a struct buf

Monday, 30 September 13



Old SCSI API
• the midlayer tried to be helpful by calling 

biodone() on behalf of sd(4), cd(4), etc

• so couldn't reuse the buf cos it would get 
completed twice

• async completions only got block I/O state

• so couldn't copy SCSI state from path xfer into 
the mpath xfer to provide total transparency

Monday, 30 September 13



Old SCSI API
• async path completion would have caused mpath 

I/O to restart from interrupt context, and we have 
to try and do it because of the contract between 
layers

• we would end up doing synchronous and 
polled SCSI xfers for multipath targets

• so I rewrote the guts of the midlayer

• krw@ has talked this a couple of years ago

Monday, 30 September 13



New SCSI API
• totally event driven (except for autoconf)

• even resource allocation is via callbacks

• command submission from any context

• completion via callbacks with complete 
scsi_xfer state intact until explicitly freed

• no midlayer knowledge of block I/O anymore

• all contained in sd(4), cd(4), st(4) now

Monday, 30 September 13



New SCSI API
• improved command scheduling

• round-robin access to contended resources

• simplified midlayer and adapter interactions

• introduced a lot of fine grained locking

• provided compat via wrappers, but that's all gone

• new sync API on top of the callback ones

Monday, 30 September 13



mpath(4) and new SCSI
• mpath(4) I/O path got rewritten against a 

midlayer that was rewritten largely cos mpath(4) 
needed it

• now supports asynchronous and concurrent 
command submission and can intercept sense 
data for failure detection

• has had solid support for symmetric and 
asymmetric devices in sym(4) for a year or three

Monday, 30 September 13



"finishing" mpath(4)
• this talk got accepted so I had to finish mpath(4) 

• it lacked support for controller failover

• it only attached paths on active controllers

• if LUN ownership in an array changed mpath(4) 
wouldn't notice and I/O would fail or stop

• only supported paths on a device

Monday, 30 September 13



"finishing" mpath(4)
• implemented groups between paths and devices

• groups identified by path driver at attach time 
usually by querying which controller they're on

• groups are either active or inactive

• all paths in the active group get I/O

• round-robin in the active group

• asym devices add each path to different groups 
so mpath(4) doesnt have to do MRU anymore

Monday, 30 September 13



"finishing" mpath(4)
• implemented detection of LUN ownership change 

by fleshing out path drivers sense callback

• intercepted on the way back from normal I/O

• groups are queried for their active state until one 
is found, then I/O resumes as normal

• querying is implemented as a state machine

• originally as a task in a thread but OMG PAIN

• event based with callbacks now

Monday, 30 September 13



mpath(4) in practice
• multipathing exists to increase availability of SCSI 

devices and hide transient failures or topology 
changes from things using them

• ie, mpath(4) is there to tell lies

• eg, don't panic if you unplug the disk / is on

• increased bandwidth is nice, but meh

• to lie well it needs to trust what it sits on top of

Monday, 30 September 13



mpath(4) in practice
• you need adapter drivers that handle failures and 

timeouts, and do hotplug really well

• that means mpi(4), mpii(4), and vscsi(4)

• isp(4) resists us at the moment

• I've been extremely conservative about which 
devices path drivers claim

• might make it conditional adapter driver too

Monday, 30 September 13



mpath(4) in practice
• you need very intimate detail about your devices

• sym(4) is free

• dm-mpio is the best reference we have :(

• rdac(4) is working great cos I have it plugged in 

• I will update hds(4) and emc(4)

• path drivers are easy if you can get the 
hardware knowledge, so please help

Monday, 30 September 13



mpath(4) in reality
• mpath(4) is not enabled in GENERIC yet

• very solid on top of mpi(4), mpii(4), 
vscsi(4)+iscsid(8)

• but iscsid(8) is not enabled or finished really

• sym(4) support likely to be the most popular

• the hardware is cheap

• but people will expect a lot from so"ware RAID

Monday, 30 September 13



mpath(4) in the future
• enable mpath(4) and sym(4) at least

• logical-block I/O scheduling is necessary

• difference between 10MB/s and 120MB/s writes

• may improve path utilisation too

• add path drivers as hardware and time permits

• mpath ahci(4)?

• mpath on clustered RAID?

Monday, 30 September 13



Questions?

Monday, 30 September 13


