Let's make manuals more useful!

Ingo Schwarze
OpenBSD

ABSTRACT

This paper summarizes the lessons learnt from the first six years of mandee{dprdent (2008-2014): what to

keep in mind when reading and writing documentation and setting up documentation systems for operating systems
and portable softare. Itcovers the content of the tutorial of the same nanvergon Sptember 26, 2014 during
EuroBSDCon in Sofia, in a form more suitable to self-instruction than a set of presentation slides. It includes some
additional material>@ending the scope thatowldn't fit into the three hours of the tutorial, in particular allvarié

content of my tw BSDCan presentationsvgn in Ottawa in May 2011 and May 2014.

Version: September 10, 2014

Ingo Schwarze: Let's mekranuals more useful! - 1 - EuroBSDCon 2014, September 26, Sofia

0. Introduction, motivation, and history

0.1 Quality of software and documentation
0.1.1 Qualityof software

Obviously software needs to be correct, robust and secure, or you wouddnit for fear of getting incorrect
results, being out of service when you need it most, or losing or leaking your data.

Software also needs to be well-designed for usabilityou cannot use it because learningvhio use it or actually
using it would tak too much time and effort.

It directly follows that documentation is a critical, integral part of software. Wthout documentation, it is

impossible to judge correctness of a piece of software because only the documenation can specify what the software
is supposed to dawithout documentation, usability of the software is very bad; it cannot be used at all without
experimentation, andven if you figure out the part of the functionality you need, there is no way of making you

sure you use it correctlyou use it in a way reliably and securely producing correct results. The only way to be sure
would be to read and understand the complete source code, which is impractical in almost allecefcess e

professional software deloper.

0.1.2 Qualityof documentation

When asked for the quality of avgh piece of software, most people think of the quality of the code. Is it well-
structured? |# simple? Was it designed and written with secure coding practices in mind? Is it reliable and
robust? Isit efficient?

However, documentation comes with a bunch of additional quality criteria ofnits dbviously, the documentation
needs to be correci factual error in the documentation is often almost indistinguishable from a bug in the code: In
both cases, the software does not do what ypaa. Documentationeeds to be complete. Features missing from
the documentation are not much better than unimplemented or buggy features for the reasons mem@ned abo
Documentation needs to be concise. The wortlvatf a lrilliantly designed interface is greatly dimnished if you

have o toil hours on end trying to makead or tail of the documentation before you can start using the software.

What is often verlooked is that documentation needs to be easy to find and easily acCd$sildaaste of time if

you need a web search enginemndocate(1) on the local machine before you find it; areth & you do find it,

you may wonder whether it corresponds to the particular version of the software you happen to be using. Unless
there is one single standard place for all documentation, youveayniss the existence of some of it. Some
documents may require a web browseme a text process@ome an info(1) program, and if all use different
formatting conentions and different controls for navigating it, distraction and misunderstandings will abound.

Software documentation is not just plairttelt embeds and explains syntax elements used by various programming
languages and by thousands of utility user iatm$. ® ease understanding, such syntax elements need to be

marked up, resulting both in special formatting when the manual is displayed and in enabling searches for words in
specific syntactic roles.

Finally, documentation needs to be easy to write. There iegions of bored technical writers around waiting for

new free software being written, waiting to pick it up and document it. Amed &they were, thg would have a

hard time doing the ark. Essentiallydocumenting a piece of software requires reading and understanding the
complete code, so the author of the software is about the only person able to adequately and efficiently do the job.
Unfortunately few oftware deelopers enjg writing documentation, most prefer writing code. So in practice, if
writing the documentation is difficult or tedious, it will end up being done poorly or not at all.

1. http://www.openbsd.org/papers/bsdcan11l-mandoc-openbsd.htmi
Almost all content from that presentation is included in the present, @mme places in updated or corrected form. It is
subsequently cited in the following way: BSDCan 2011 p. 2

Ingo Schwarze: Let's mekranuals more useful! - 2 - EuroBSDCon 2014, September 26, Sofia

0.1.3 Casestudy: OpenBSD

Among the OpenBStdevelopers, all the points made aksoae part of a general consensus. Consequehdy
project can be used as an example of one way to deal with these points, and to illustrate some of the problems that
arise.

Even though the relence of this paper is by no means limited to OpenBSD, that system will repeatedly be used for
illustration purposes throughout this pgpsually in subsections entitled "Case study: OpenBSD". This approach

is particularly instructie because almost all of the pioneering work related to the mandoc(1) pwsatone in

the context of the OpenBSD system, paving the way for other systems.

In OpenBSD, all ne reference documentation is written in one single format, the mdoc(7) lantaadgut into

one single place, the system manual pages accessible via the man(1) viewer and the apropos(1) search tool. No
user-visible code addition, change, or deletion can be committed without updating all documentation affected by the
change at the same time. This is easy to handle ¥efageers since all documentation igyamized strictly in
reference-manual mannéegvery piece of documentations closely accompagnies the pfiitgtion, device, or file

format it documents. Consequentll documentation is alays complete and up-to-date/ea in OpenBSD-current
shapshots.

There are some limitations to this system, though. The most obvious one arises when including software having
lower documentation standards. The SQLite documentatianrecent and blatant example of such problems.
While the documentation provided by SQLite is accurate, complete and concise, fulfilling some quite important
requirements, it lacks versioning, ease of access, and syntax markup. It is not included in the software distribution
but only made gailable on the web, so the version you can get access to — if yedritarnet access, a browser,

and figure out where it is — almostvweecorresponds to the version of the software you run. On top of that, it
critically relies on GIF imagéshat cannot be displayed on a terminal, but require specialaseftvConsequently
OpenBSD contains the SQLite3 library withouy @ocumentation. Thigs an example of an unsolved problem.
Automatic or semi-automatic ceersion of the documentation to a better format might be possible, but would
require very substantialosk. Thenginx.conf(5) manudlis an example where a semi-automaticvession of web
content to an actual manual page was recently performed, and it did indeed require considerable effort.

Another issue with the approach "all documentation is reference manualg! e &tswer questions related to the
choice of the right tools, li"does OpenBSD include web servers, and if so, which one is adequate for my
purposes?” Usersannot be expected to search for the answer of such a question in the httpd(8) manwed,idind e
they would, it would be the wrong place for explaining that OpenBSD-specific versions of nginx(8) and Apache 1.3
exist in ports, ha these were enhanced with respect to upstream versiamshaomight influence the choice of

tools, and wh you shouldrt use Apache 2 unless you really needrtr questions of this type, OpenBSD has a
second place for documentation, t#eQE° There are plans to include it as a special section into the manual, but this
has not been done yet. Rightwat's anly available on the web, causing the usual versioning problems: It is only
updated for each release and does natrd@penBSD-current. Alsdt does not she up when searching the

manuals with apropos(1).

0.2 Manualsfrom the user’s perspective

Considering manual pages, for most users, only one single tool will come to mind: man(1), the manual viewer.
Maybe surprisinglyuntil this summerman(1) was not part of the mandoc toolboserethough the related search
tool, apropos(1), which is also knownraan —k, was1° Very recently man(1) has finally been integrated.

http://www.openbsd.org/

http://mdocml.bsd.Iv/

http://mdocml.bsd.lv/man/mdoc.7.html

http://sqlite.org/docs.html

http://sqlite.org/images/syntax/select-stmt.gif
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-5.5/man5/nginx.conf.5
http://nginx.org/en/docs/dirindex.html

http://www.openbsd.org/fag/

©oNOGORE LN

Ingo Schwarze: Let's mekranuals more useful! - 3 - EuroBSDCon 2014, September 26, Sofia

Now we haveone single tool with a unified, simple user interface, performing the following steps in sequence:

1. Findone or more manuals in the file system. The traditional tools for this purpose are man(1) ¥af bgtrie
name and apropos(1) for searches.

2. Transparently call a formatter on them, where required. The traditional formatting commands are mandoc(1)
and nroff(1).

3. Displaythe formatted text, typically in a pagekgan, the traditional tool for this purpose is man(1).
During the last three years, major steps forward for the mandoc toolbox were, from the useryrspecti
+ Output modes -Tuft8 and -Tlocale axaitable since May 20, 2011.
« Semantic searching is ready for production since April 14, 2014.
+ The nev man.cgi(8) featuring semantic searches is online on www.openpsthce July 12, 2014.

« A man(1) implementation providing the unified user interfaceagable in OpenBSD-current since August
26, 2014. Howeer, OpenBSD still installs the traditional man(1) implementation by default.

« The full user interface including mandoc(1) functionality is reachable via the man(1) command name since
August 30, 2014.

0.3 Manualsfrom the author’s perspective
Of course, one concern of manual authors will be which languages and tgdiavh® use to write their manuals.

Nowadays, we recommend using one simple, versatile language for all software documentation: mdoc(7). It is
based on the roff(7) language, the roots of which extend well beyond the UNIX era, back to 1964. The mdoc(7)
language is the successor of the man(7) language that was first used to format the AT&T Version 7 UNIX manuals in
1979. Itwas designed for 4.4BSD by the Berkgl€omputer Systems Research Group in 1990. Itvs supported

by both mandoc and groft.Groff devdopment started in 1989, mandoc in 2008.

During the last tw years, the main step forward in the mandoc toolbox from the asifigospectie was the
implementation of the mdoc(7) to man(7) eemer. More details on that folle later in this paper.

0.4 Origins of the roff(7) language syntax

Considering the history of the fdnguage, we can start by celebrating anversary This yeay 2014, rofis
looking back on exactly half a century of aetievdopment??

When preparing his thesis at the Mpfofessor Jerome H. Saltzer in 1964 wrote the RUNOFF utility which became
later known as rdéfin the UNIX world*® His original implementation used the Michigan Algorithm Decoder (MAD,
1959) programming language for the Compatible Time-Sharing System (CTSS, 1961) operating system running on
the MIT’s IBM 7094 mainframe computeHe took inspiration from the Memo, Modifgnd Ditto tools written by

Lowry, Corbato, and Steinbgithe year before.

He already used the fundamental concept of text and macro lines. Macro lines contain a period (*."), a macro name,
and optional gyuments. Thegcontrol formatting — and, in modern macro languages, &he also used to specify
semantic markup. All other lines are text lines.

10. http://www.openbsd.org/papers/bsdcan14-mandoc.pdf
Almost all content from that presentation is included in the present, @meme places in updated or corrected form. It is
subsequently cited in the following way: BSDCan 2014 p. 2

11. http://www.gnu.org/software/groff/

12. BSDCan 2014 p. 3

13. http://manpages.bsd.lv/history.html

Ingo Schwarze: Let's mekranuals more useful! - 4 - EuroBSDCon 2014, September 26, Sofia

The following requests he introduced in 1964 are still in use today:

ad select text adjustment mode
br break the output line

ce center some lines of text

fi enable text filling mode

in indent some lines of text

Il setthe output line length

nf disable text filling mode

sp insert vertical spacing

0.5 Advantages of the roff maco syntax
. It can easily be hand-edited with minimal typingthead*
« It looks unobtrusie and does not muddle the actual text.
« It harmonizes very well with diff(1).
- It allows high quality output in multiple output formats, in particular for terminal output and typesetting.
- It works with simple, fast, portable, readilyadable tools.

- It does not need grheavyweight or cumbersome toolchains, in particul@oes not require XML.

0.6 Origin of the basic manual structure

Ken Thompson and Dennis M. Ritchie already useflwtifen preparing the AT&T Version 1 UNIX manual at the
Bell Labs in 1971° Dennis M. Ritchie and Joseph®ssanna wrote this version of fé6r UNIX in DEC PDP-11
assembler.

The format of the manuals was inspired by the CTSS manuals.

The following section headersyakeen in use since Version 1 UNIX: NAME, SYNOPSIS, DESCRIPTION,
FILES, SEE ALSO, DIAGNOSTICS, BUGS.

Until AT&T Version 3 UNIX, the manuals were formatted in pure roff, without usingraff macro set. The only

roff source file included was the filran0O/aa disabling adjustment witha, clearing the hyphenation character with
hc, setting up a default indentation witin, and defining a default page footer line with The latter no longer

exists in modern rdfand would be implemented in termswi (page position trap) artti (three-part header)
nowadays. Theonly roff requests used abundantly in the Version 3 UNIX manuals spdiasert vertical space) to
mark paragraph breaks amdtemporary indent for the next output line) to set section headers without indentation.
A considerable list of various macros still in use today occurred occasidoakxample

bp break output page

br break output line

ce center next line

fi enable fill mode

in change permanent indent
nf disable fill mode

nx include input file

ta set tab stop positions
tc set tab fill character
tr translate character
ul underline

Precursors to man(7) and mdoc(7) macros occurred in Version 4 to Version 6 UNIX (1973HA®&pample, the

14. BSDCan 2014 p.5
15. BSDCan 2014 p. 6, http://minnie.tuhs.org/cgi-bin/utree.pl?file=V1/man/manintro.txt

Ingo Schwarze: Let's mekranuals more useful! - 5 - EuroBSDCon 2014, September 26, Sofia

files manO/nador terminal output anchanO/taafor typesetter output defined macros for the following purposes:

th page title, nv TH/Dt

sh section headenow SH/Sh
bd bold text, nav B/Sy

it italic text, nav I/Em

The man(7) language first appeared in Version 7 AT&T UNIX (1979).

0.7 Origin of semantic markup in manuals

The mdoc(7) semantic markup macro language was designed to format the manuals of the 4.4BSD release. The
translation of the manuals from man(7) to mdoc(7) was performed by Cynthia Livingston of UZENkXfirst

few of these translated manuals appeared in 4.3BSD-Reno in 1990. The formatter used for this version was Brian
Kernighans device independent troff, written in K&R C, running on BSD UNIX on DEC VAX.

The advantages of the mdoc(7) language are:
- Considerable express power for semantic markup, while man(7) is a presentatizet language only.

- It works in practice as a standalone language, while man(7) regularly requires resorting vellowifle
features.

» Consequentlymdoc(7) shows a more more uniform appearance and is easier to read and write than man(7).

- Portability is no longer an issue: fogkey systems still not having mdoc(7), mandoc(1) can be used to
convert to man(7).

The mdoc(7) languages supports semantic searching.

0.8 Classicdocumentation formats (summary)

The roff(7) input syntax, the mdoc(7) semantic markup, and the man(1) presentation feaabven timeless by
their simplicity and efficienc!’ Nobody has come up with a better basic concept yet,taough mag havetried,
and rgarding the formats, there is indeed little one could wish.

Consequentlymodern tools are needed for all this.

0.9 Advantages of mandoc
. Functional — all in one binar}f

- Searching by filename, page name, word, substring, regular expression, seaeyantic k
- mdoc(7), man(7), tbl(7) and some eqn(7) and roff(7) input

« ASCII, UTF-8, HTML, XHTML, PostScript, PDF output

« mdoc(7) to man(7) caersion

« includes mandoc(1), man(1), apropos(1), whatis(1), ancwelkis(8)

» Free — ISC/BSD-licensed, no GPL code.

- Lightweight — ANSI C, POSIX, no C++ code.

- Portable — includesompat_*.cfiles for missing functions on older systems.
« Small — source tarball (uncompressed) is 8% of graficetable binary 50%.

« Fast — for mdoc(7), typically 5 times faster than groff, typically about a hundred times faster than an
AsciiDoc/DocBook toolchain.

16. BSDCan 2014 p. 7
17. BSDCan 2014 p. 9
18. BSDCan 2014 p. 10

Ingo Schwarze: Let's mekranuals more useful! - 6 - EuroBSDCon 2014, September 26, Sofia

1. Usingthe mdoc(7) formatting language

1.1 Gettingstarted with mdoc

This section describes the most important things a beginner needswaldad the mdoc(7) language in order to
write a nev manual page from scratch.

An mdoc(7) source file consistsmofacio linesstarting with a dot (‘") in the first column, mostly specifying
document structure and providing semantic annotationgeahtinesstarting with ag other characterMacros take
ary number ofargumentsseparated by blank characters (* ’). If an argument contains a blank chagackese the
whole argument in double quotes ().

Every manual page starts witlpelogueexclusively containing macro lines and ve any text lines. Afterthat,
somesectionswill follow, each starting with aBh macro. Sectionkave cnventional names and foNwa grict
conventional order Avoid custom section names, except when splitting the DESCRIPTION in very long manuals.

1.1.1 Theamdoc prologue
Always use the following macros in the following order:

Dd Document date. Use the formdbnth dayyearwith a full English month name, a one- or two-digit day
number and a four-digit year.

Dt Document title and section numbérhe first argument is the name of the manual page that will be passed to
the man(1) command, but aanted to ALL CAPS. The second argument is the section number as a single
digit, see the man(1) or mdoc(7) manuals for lists of section numbers.

Os Optional operating system name. Jusvéeiablank.
Sh Section headerThe argument of the first section header macro must be the exachgtiig.

Nm Pae name. The same name you providedfighut nowv using its normal lower-case or upper-case spelling,
whatever is gopropriate.

Nd One-line description. No quoting is needed.
As a beginnelit may help to remember the numtsex: If y our prologue has six lines,stfrobably complete.

Here is a typical example:
.Dd July 16, 2013
.DtCAT 1
.Os
.Sh NAME
.Nm cat
.Nd concatenate and print files

1.1.2 TheSYNOPSIS section

In manuals documenting utilities (sections 1 and 8) and library functions (sections 2 and 3), the nextwegsion al
starts with.Sh SYNOPSIS This section only documents syntax, not semantics. virmmentains ay free tt. Do
not worry about formatting. Just specify the syntax, formatting will be done automatically.

For utilities, you almost alays need the following macros:

Nm Utility name. Usually the same you used in the NAME section.
Op Optional syntax element.

FI Command line options (flags).

Ar Command line arguments.

Ingo Schwarze: Let's mekranuals more useful! - 7 - EuroBSDCon 2014, September 26, Sofia

A typical example looks lithis:
.Sh SYNOPSIS
.Nm cat
.Op FI benstuv
.Op Ar

The formatted output is:
SYNOPSIS
cat [—benstuy [file ..]

Most macros can takather macros as guments. Irthat case, thealledmacros dort’havea dot, like FI andAr in
the example ah@. TheOp macro is an example of @mclosuremacro, having acopethat can contain macros and
text. For Op, the scope extends to the end of the input line.

For library functions, you almostwaéys need the following macros:

In Include file.

Ft Function type.

Fo Begin (open) function declaration.
Fa Function argument.

Fc End (close) function declaration.

A typical example looks lithis:
.Sh SYNOPSIS
.In unistd.h
.Ft ssize t
.Fo read
.Fa"intd"
.Fa "void *buf"
.Fa "size_t nbytes"
.Fc

The formatted output is:
SYNOPSIS
#include <unistd.h>

ssize t
read(intd, void *buf size t nbytes

TheFo macro is lock macro starting a scope that requireglicit closure by thé&c companion macro.
1.1.3 Thealescription section

Next, esery manual page has a section starting with DESCRIPTION. Start it by explaining the purpose of the

topic, followed by a concise description of the syntax and semantics of all features, except those to be described in
the following sections coming after the DESCRIPTION itself: RETURN VALUES (of library functions),
ENVIRONMENT, FILES, EXIT STATUS (of utilities), EXAMPLES, DIAGNOSTICS (of utilities), ERRORS (of

library functions). Finallyyou can add some sections containing concluding material: SEE ALSO, STANDARDS,
HISTORY, AUTHORS, CAVEATS, BUGS.

1.2 Resouces

The most important resource to use is the mdoc(7) manual page. In panibelawondering which macro to use

for markup, first look at the MAGR OVERVIEW section for candidates, then at the description of the specific
macro you consider to choose in the MACREFERENCE section. The mdoc(7) manual also contains some more
details rgarding the various manual sections.

To e examples of good usage, look at existing manuals in the OpenBSD base tree. This is particularly helpful
when wondering about customary choices of maaggaraents. Br example, you might find the customary form of
an option list in the DESCRIPTION section in this watich is:

Ingo Schwarze: Let's mekranuals more useful! - 8 - EuroBSDCon 2014, September 26, Sofia

The options are as follows:
.Bl -tag -width Ds
AtFla

Runmandoc -Tlint on what you hee written. Itcatches most syntax errors and provides some stylistic hints
regading syntax.

If ambiguities remainwen after studying the mdoc(7) manual, try looking at the groff_mdoc(7) manual contained in
the textproc/grdfport. Insome cases, it may contain additional hints.

If you feel information is missing from the mdoc(7) manual or think something could be made eigtgdo the
mandoc discussion ligt.

Kristaps has written a full tutorial, "Practical UNIX Manuai8".

1.3 Blocknesting

The mdoc(7) language does not only provide formatting cues and semantic markup to manual pages, but it also
provides a structure to the docum&nBections, subsections, displays, lists, list items, and quoting enclosures are
blocks that can nest within each othaerd that can contain text and markup elements, which in turn can contain text.
So while a man(7) document merely told you "this string is to be set in an italic font", an mdoc(7) document might
tell you something lig "this is a function argument in a function prototype in the SYNOPSIS section" or "this is an
option character marked as optional in a list item of a tagged list in the DESCRIPTION section.”

Here is an example of nested blocks:
$ mandoc chgrp.1
SYNOPSIS
chgrp [-fh] [-R [-H | -L | -P1]] group file ...

The corresponding mdoc(7) source code reads as follows:
$ | ess chgrp.1
[...]

.Sh SYNOPSIS
.Nm chgrp

.Op Fl th

.00

FIR
OpFIH|L|P
.Oc

Ar group

Ar

[.]

Mandoc represents this by this syntax tree:
$ mandoc -Ttree chgrp.1 # much simplified
Sh (block) SYNOPSIS
Nm (block) chgrp
Op (block)
FI (elem) th
Oo (block)
Fl (elem) R
Op (block)
Fl (elem) H
(text) |

19. mailto:discuss@mdocml.bsd.lv
20. http://manpages.bsd.Iv/
21. BSDCan 2011p.7

Ingo Schwarze: Let's mekranuals more useful! - 9 - EuroBSDCon 2014, September 26, Sofia

Fl (elem) L
(text) |
Fl (elem) P
Ar (elem) group
Ar (elem) file ...

By contrast, the traditional riodlesign knev no Hock structure. On the lowervd of that designroff requests
provided physical formatting, registers to store data, and macro expaadidgie$. Onthe higher lgel of that
design, thandoc macrosalled physical formatting requests, set registers to keep state, but did not regukindan
of a syntax tree in grstage of their processing. Sweea though the mdoc(7) language itselivays contained
structural information, before the advent of mandoc(1), that information coddantually be used for anything
but was discarded in the very first step of the formatting process.

1.4 Badlynested blocks

Unfortunately and in contrast to marother languages featuring nested blocks, in particular XML, the mdoc(7)
language does not only support the nicely nested blocks shown in the previous section, but it also allows badly
nested blocks, that is, blocks thatdap without ag of them being completely contained in the ofifer.

The simplest case of badly nested blocks can be constructed withgusbtks, if both blocks first open and then
closein the same orderIn that case, text following the opening of the first block is only contained in the first block,
text following the opening of the second block is contained in both, and text following the closing of the first block
is only contained in the second one.

Here is an example witplicit blocks, that is, blocks being closed with an explicit block end macro:
Ao ao
.Bo bo
.No ac Ac
.No bc Bc

This example formats as:
<ao [bo ac> bc]

The same result can be constructed witplicit blocks, that is, blocksabys extending to the end of their input
line and automatically closing their scope at the end of the line. Here is the variant where an explicit block breaks
an implicit one, that is, the end macro of the explicit block occurs while the scope of the later implicit block is still
open:

Ao ao

.Bq bq ac Ac eol

This example formats as:
<ao [bg ac> eol]

Corversely an mplicit block can break an explicit one, that is, the line containing the implicit block might end
before the end macro of the later explicit blockvasi

.Aq aq Bo bo eol

.No bc Bc

This example formats as:
<a([bo eol> bc]
Actually, this is the most important case in practice, and we shall return towt. belo

Note that implicit macros cannot break each otliethey are on different input lines, their scopes do not intersect at
all. If they are on the same input line, thboth end at the same point, at the end of the line, so the earlier one
completely contains the later one.

22. BSDCan 2011p.8

Ingo Schwarze: Let's makmanuals more useful!- 10 - EuroBSDCon 2014, September 26, Sofia

1.4.1 Thescope extension macro

There is one enclosure macro that, in contrast to all other enclosure macros, generates no outprerwigdtisee
at the beginning nor at the end of its scof@Xc. Its sole purpose is to Yaits scope broken by an implicit macro,
effectively extending the scope of the implicit macro onto the following lines. The only case where this is used in
practice is to extend the head scope of the list item macro, .It. Here is a practicle example:

$ | essfind.1

[...]

It Xo

.Ic -exec Ar utility

.Op argument ...

.No;

Xc

This example formats as:
-exec utility [argument ...] ;

For modern rof implementations including gricdind mandoc, this can egalently be written as:
It Ic -exec Ar utility Oo argument ... Oc No ;

The original motration for introducing the<o macro here was that historic fofplementations only supported a
limited number of macro arguments on a macro line, and thesahe-line version would he \iolated that limit,
causing the last one or tvarguments to be lost.

When working on mandoc(1) in 2010, our first thought was: deprecate this abomination, tell manual authors to use
the the one-line version, the historical argument limit is no longerargleso we get a clean definition of the

language. Hwever, large numbers of manuals in various operating systems and in countless portable software
packages usk Xo, and there is no way to find and change them a#yavhere, or gen to change the habits of

people writing n& manuals.

So somewhat reluctantly at first, we implemented support for badly nested blocks in mandoc(1) in the following
way, using the first example cited al@for the explanation: The Ao block contains teoleBo block, and the Bo
block contains an Ao body-end element in the middle, indicating where Ao formatting is supposed to end.

1.4.2 Cassestudy: OpenBSD

Related timeline:

2010 Feb 23 reme Oo .Xo .Oc .Xc mis-nesting from manuals (questionable)
2010 Feb 26 support .1t Xo (good); all mdoc(7) manuals build now

2010 Jun 29 support badly nested blocks in generah (@tter)

Ingo Schwarze: Let's makmanuals more useful!- 11 - EuroBSDCon 2014, September 26, Sofia

2. Manual pages for portable software

2.1 Choosinghe language

Consider portable software packages kitdo(8), OpenSSH, OpenSMTPd, and sdhich markup language
should be chosen for the manual pages? At first, one might think that choosing mdoc(7) would cause issues for
some lgacy systems that still domnhavemdoc(7) after it has been freelyailable for more than 20 years (hello,
Solaris). Havever, using man(7) makes maintenance much harder aed gp £mantic markup, which would be a
very bad idea indeed.

The mandoc toolbox provides a good way out of this dilemma. Write the manual pages using the mdoc(7) language.
Usemandoc —Tmanto corvert them to man(7) format — that ogenter is fully operational since Nember 19,

2012 and constantly maintained, so you need not fear that it mightago baclude both the mdoc(7) and man(7)

versions into distribution tarballs. Letonfigurefigure out what the target system supports and install the best
supported version.

2.2 Casestudy: the sudo(8) manuals
2.2.1 Buildsystem for the distribution tarball

Among the maintainer targets, the Makefile contains targets similar to the following, shown here in simplified
form:%4

sudo.man: sudo.mdoc
mandoc -Tman sudo.mdoc > sudo.man
sudo.cat: sudo.mdoc
mandoc sudo.mdoc > sudo.cat
2.2.2 Installatiorsystem
- If ./configure finds mandoc(1), it installs tHemdocpages.
- If ./configure does not find nroff(1), it installs thecat pages.
« If ./configure successfully testsroff -mdoc, it installs thet.mdocpages.
- Otherwise, it installs themanpages.

- To override this autodetection logic, it provides optienwith-mdoc and—-with-man.

2.3 Implementationof the mdoc to man cowmerter

The cowerter first runs the mdoc(7) parseonstructing exactly the same abstract syntax tree in memory as when
running-Tascii, ~Thtml, or —Tps.?®

After that, it runs a dedicated mdoc-to-man output module, structured similarly as the mdoc-to-ASCII output

module, but sharing no code. That module consists of only one file, 1600 lines of very straightforward C source
code. Itscentral component is one macro lookup table containing pre- and post-node action functions and pre- and
post-node output strings for each mdoc(7) macro type. The module iterates the syntax tree and calls the appropriate
action functions for each mdoc(7) node.

An alternatve, dightly more flexible approach would Y& teen to first translate the mdoc(7) syntax tree to a man(7)
syntax tree, then provide a non-translating man(7) output module. That wealdlbaved man-to-man code
normalization as a by-product. Howveg, the direct approach was simpler and has so farepraufficient for all

practical needs.

23. BSDCan 2014 p. 33
24. BSDCan 2014 p. 34
25. BSDCan 2014 pp. 35

Ingo Schwarze: Let's makmanuals more useful!- 12 - EuroBSDCon 2014, September 26, Sofia

The comwerter is a typical example of a tool that was technically quite easy to build on top of existing infrastructure,
that is on top of the mandoc(3) parser librént quite useful and powerful in practi€®At first, | underestimated
the importance of this tool, soxd#gopment only proceeded haltinglyearly exclusiely at hackathons:

- | started dgelopment on September 17, 2011 (s2k11, Ljubljana).
«» The bulk of the work was done around July 10, 2012 (g2k12, Budapest).
« Itis ready for production since Member 19, 2012 (c2k12, Coimbra).

26. BSDCan 2014 pp. 36

Ingo Schwarze: Let's makmanuals more useful!- 13 - EuroBSDCon 2014, September 26, Sofia

3. Quality control for existing manuals

3.1 Why itis critical to get errors and warnings right

A good system of warning and error messages considerablyiesghe quality of a gien piece of software.
Without it, e/en with good documentation, usersvbeaa tard time to figure outvhatexactly is wrong as soon as
anything goes wrong — and sooner or latemethingwill always go wrong.

There are manpitfalls to avoid when implementing a message system, and all of them cause their specific class of
problems for the user:

- Afatal error gets thrown: The manual doesormat at all, which is very inceenient. Byall means, we
want to report errors, but we wary hard to get going and not error out, no matter what broken manual page
source code we findl.

- An error message is missing or too generic: Users hdard time to fix their erroré

- A warning message is missing: Users demén notice their dangerous idioms.

- A few warnings too may or too prominent: Users get annoyed and switéllbfvarnings.

» More than one or tavknobs: Users dohtemember and donuse them.

- Too few and too mawg can happen all at once! It did with mandoc, and it had tooyrkaobs - at first.

For mandoc(1), improving the message system was an enaticess that took seral steps until we awed at we
have tbday Major cleanups were done in July 2009, May 2010, August 2010, October 2010, January 2011, March
2011, July 2014, ...

Related timeline:

2009 Jul 12: fewer knobs: rerm-Wsyntax -Wcompat

2010 May 13: fewer knobs: rew® fno-ign-chars

2010 May 23: unified error and warning system by kristaps@

2010 Aug 19: simple, consistent user interface for error handling
2010 Oct 24: do not thvofatal errors when there is no need to

2010 Oct 26: downgrade nearly 20 errors to warnings

2011 Jan 16: downgrade yet another bunch of fatal errors

2011 Jan 22: check argument count validation for all in_line() macros

3.2 Goalsof quality control for manuals
There are manpossible motrations for taking an existing suite of manuals and doing quality checks on them:

Making sure all manuals actually produce output.
In exceptional cases, manual page files can be so broken that formatters do not pyoduipeitat all, but
just shev an anpty page, abort processing, oee crash, if the broken input triggers bugs in the processors.

Making sure that all intended content is actually shown.
Some particularly seere markup errors may cause document content to be completely lost during formatting.
The most frequent example are probably mistyped macro names. Another example is inadvertently putting
text on a preceding macro line instead of startingralime, exceeding the maximum number of arguments
for that particular macro, if it has such a limit.

Catching seere formatting errors.
Even if all intended text is shown veee misformatting can makit hard to read.

27. BSDCan 2011 p. 10
28. BSDCan 2011 p.21

Ingo Schwarze: Let's makmanuals more useful!- 14 - EuroBSDCon 2014, September 26, Sofia

Catching typos and stylistic glitches.
These can be distracting, sometimesneconfusing, when users are reading manuals and trying to understand
the content.

Improving portability.
Some particular constructions work with some formatters but fail outright with other widespread formatters,
for example nested displays. Obvioysych constructions should beceded. Ofcourse, judgement is
needed here, portability can easily lverdone. Ifyou were to write manuals in a way compatible with very
old, historic formatters, you would end up with mdoc(7) code that would be hard to read and maintain.

Improving robustness.
Some requests in principle work with all formatters, but are inherently fragile, in particusar(fihe
inclusion) request.

Unifying the style of displayed manuals.
If the manuals displayed to users falloommon comentions with respect to structure, arrangement of
content, formatting, and wording, thare easier to understand.

Improving the style of the source code.
If the mdoc(7) source code of the manual pages follows commeertmms, @en if these dort'make a
difference for what is displayed, editing and maintenance become simpler for authorgaopbde

Finding formatter bugs.
While strictly speaking, this is not a mattemonual pge quality control, but rather of pager and formatter
utility quality control, some of the techniques that can be used are so similar that discussindapether
helps a lot. Besides, cases exist where distinguishing formatting bugs, parser bugs, and formatter bugs is non-
trivial, or even merely a matter of definition.

Obviously these goals are verywdrse, and the difficulty to do the required checks manually or automatically varies
greatly Various tools arevailable, most having strengths in one or & farticular areas, but not doing much with
respect to other areabor some goals, there is hardlyyaautomatic support, and manual work is required.

In the following, tools are listed roughly in the order of importance for somebody doing bulk checks on a larger
body of manualsFor just checking a single page, you are likely to getyawith the simplest of these tools plus

some manual checking. On the other hand, for hunting parser bugs, the more elaborate of these tools are certainly
needed.

To avoid distraction, the following sections assume that all the source files you want to work on are in a single
directory and that directory contains no other files. In practice, that will sometimes not be the case, and you may
need tools like find(1). Oneuseful technique is to prepare a list of files you want to work on and then use commands
similar to:

mandoc -Tlint -Werror $(cat files.list)

3.3 Checkingwith mandoc -Tlint

The most important tool for grkind of manual page quality control is mandoc(1) itself, in particulatsand
—Tlint options.

3.3.1 Catbing fatal errors

When processing a larger amount of manual pages, the first step is to check wiyathéreme pages causes a fatal
error. When dealing with just a handful of pages, this step can be skipped, the fatal errorsaiipshmong the
normal errors belw.

To find fatal errors, run a command similar to:
mandoc -Tlint -Wfatal *

Any fatal errors that sloup here must be fixed and should be dealt with first, before looking at anything else. A
fatal error means that the user is unable to read the manual at all, because parsing the manual fails outright and no
output whatsoeer can be generated. ConsequentByving a manual containing a fatal error is not much better than

Ingo Schwarze: Let's makmanuals more useful!- 15 - EuroBSDCon 2014, September 26, Sofia

having no manual at all.
Very few types of fatal errorsxést. Thosethat may occasionally occur in practice are all related to file inclusion:

« use of the unsafe macBal —file
- use of thesofile inclusion request with an absolute path

« use ofsowith a path containing "..
+ sopointing to a file that doedrexist or cant be qpened

See the mandoc(1) manual in the portable mandoc distriBitmrdetails, section "&TAL errors".
3.3.2 Catbing errors

The most important step when doing quality control with mandoc(1) is to deal with errors. These are issues that can
potentially cause loss of informationyege misformatting, or sere portability problems.

To find errors, run a command similar to:
mandoc -Tlint -Werror *

The mandoc(1) utility tries very hard tecid false posities when reporting errors. So, if it reportsyasrors, you
very probably want to fix them. If you run into anything you did on purpose and want to keep it as it is but
mandoc(1) calls it an errgolease do report that to the mandoveiigpers.

There are more types of errors than fatal errors, but the number of error types that occur in practice is still rather
small:

» unencoded non-ASCII characters in the input
+ unknown or mistyped macro or request names
« blocking issues:

« opening blocks that are vex closed again
« closing blocks that were wer opened

« items outside lists

- bad nesting of blocks that desupport it

+ severe issues with macro or request arguments:

« missing essential arguments
- invalid arguments that cannot be handled adequately
« excessve aguments that get completely lost during formatting

Again, see the mandoc(1) manual in the portable mandoc distribution for details, section "ERRORS".
3.3.3 Mandoavarnings
Everything else mandoc(1) considers problematic is classified as a warning.

To se the warnings, run a command similar to:
mandoc -Tlint *

In ary tree containing manlow-quality manuals, this is likely to produce a lot of output. On the other hand, the
complete set of 145 OpenBSD system call (section 2) manuals currently causes only 28 warnings grand total. Of
these 145 manuals, 141vieao warnings at all.

We b try to avoid bogus warnings, but sometimes \aé.f Also, some usage that is usually a bad idea may be
justified in exceptional cases, in which case an occasional false@ésitie price to pay tovaid frequent false
negdives.

So, fixing all warnings is usually a good idea, but tddo’so tindly, there may be exceptions.

29. http://mdocml.bsd.lv/man/mandoc.1.html

Ingo Schwarze: Let's makmanuals more useful!- 16 - EuroBSDCon 2014, September 26, Sofia

Warning types are too numerous to provide an exhaulsi here, but most are of these or similar kinds:

« structural errors and syntax errors that onlyehlacal effects and do not cause information loss
- low quality syntax lile badly nested blocks or macro usage in contexts expecting plain text

+ macros that hee ro efect or are slightly misplaced

« missing arguments or information, if the effect is only local

« violations of usual structural or formatting eentions

« warnings about robustness and portability

- dubious usage of white space and comments

3.4 Checkingwith mdoclint

The mdoclint(1) utility by Thomas Klausner has a similar focusasdoc —Tlint. It contains some additional
tests, so it a wseful complement. It also tries toad false posities, though not quite as strictly amndoc
-Tlint. So the same ageat applies: Do not slavishly folloits findings.

The mdoclint(1) utility is ailable on NetBSE® and OpenBSB} and ought to be trivial to port to other systems
providing the perl(1) programming language.

To run it, simply gve the names of the files you want to check on the command line. Options are almostabxclusi
needed if you want it to shut up about some of its findings.

3.5 Checkingwith igor

The igor(1) utility? by Warren Block has a completely different focus than thelitwers: It mostly cares about
style and spelling and knows relady little about syntax.

In contrast to the twlinters, igor(1) isrt’ afraid of false posities. Consequent)yt is dmost unusable for bulk
verifications of large trees of high-quality manuals becaugesignal will likely be drowned in lots of noise.

For finding candidates of bad style or spelling in smaller sets of manuals, it is quite useful and finds whole classes of
issues the tavlinters are completely unare of.

It is available as a port in both FreeB&Tand OpenBSEf and should also be trivial to port toyasystem having
perl(1).

Running it works almost the same way as for mdoclint(1). Simply provide the names of the files to be checked as
command line @uments. @ uppress unwanted messages, use command line options.

3.6 Groff-mandoc comparisons

Comparing the output of groff(1) and mandoc(1) for the same input file is an important way of finding bugs in the
parsers and formatters. In some cases, such differences can also provides hints that code is of limited portability.

Of course, if code formats differentiipat doesrt’necessarily imply that the code can be inweth Whileit's
sometimes easy to spot parser and formatter bugs in such comparisons, interpreting them to identify markup of
guestionable quality definitely requires wide experience with the mdoc(7) language.

A very simple but handy shell script to run such comparisgmdiff, is available from the portable mandoc
repository?® Simply provide the names of the files to check as command line arguments.

30. http://cvsweb.netbsd.org/bsdweb.cgi/pkgsrc/textproc/mdoclint/

31. http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/regress/usr.bin/mdoclint/
32. http://len.wikipedia.org/wiki/lgor_%28character%29

33. http://svnweb.freebsd.org/ports/head/textproc/igor/

34. http://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/textproc/igor/

35. http://mdocml.bsd.Iv/cgi-bin/cvsweb/gmdiff?cvsroot=mdocml

Ingo Schwarze: Let's makmanuals more useful!- 17 - EuroBSDCon 2014, September 26, Sofia

3.7 Consistencychecking with makewhatis
While building databases, makhatis(8) can watch out for the following issues:
- Mismatch of the section numbewgn in the manual page with the directory the page is stordd in.
» Mismatch of the architecture nameei in the manual page with the directory the page is stored in.
- File name does not appear as a name in the NAME section (since April 4, 2014).
The checks that were already performed by the olcemtzddis(8) are preserved:
» Missing NAME section, missing name(s) and/or missing description.
- A name in the name section does not appear as an MLINK in the file system (since April 4, 2014).
Besides, direct inspection of the database has been used to catch markup errors.

With malewhatis(8), more can be done lat@t this is just a start.

36. BSDCan 2014 p. 24

Ingo Schwarze: Let's makmanuals more useful!- 18 - EuroBSDCon 2014, September 26, Sofia

4. Seaching and displaying manual pages

4.1 Backwardcompatibility
The mandoc toolbox preserves the existing functionality of traditional searcfi%ools:

aproposkeywords...
Search case-insensily for substrings in names and descriptions (working since October 19, 2013).

man —k arguments
As before, an alias foaproposarguments
But it nav also supports new-style arguments, seevielo

apropos[—C file] [-M path] [-m path [-S arch] [—s section} keywords...
Traditional options are all supported.

whatis keywords...
Search case-insensily for complete words in page names only.

makewhatis
Rebuild all configured databases.

makewhatis —ddirectory files...
Update entries for thegn filesin one database (working since June 3, 2013).

4.2 Markup-sensitive ®arch

In addition to traditional functionalitghe mandoc toolbox supports searching in specific semantic contexts
identified by macro éys. Thefollowing are examples of macr@ys that can be searched fordered by
frequency®

Nm manual page names
Nd manual page descriptions
sec manual section numbers
arch machine architectures
Xr cross references
Ar command argument hames
Fa function argument types and names
Dv preprocessor constants
Pa file system paths
Cd kernel configuration directes
Va variable names
Ft function return types
Er error constants
Ev environment variables
In include file names
St references to standards documents
An author names
andso on ...

Here is an example of a search command and its results:
$ apropos Ev=USER

Mail, mail, mailx(1) — send and receive mail

csh(1) — a shell (command interpreter) with Clike syntax

login(1) — log into the computer

37. BSDCan 2014 p. 12
38. BSDCan 2014 p. 13

Ingo Schwarze: Let's makmanuals more useful!- 19 - EuroBSDCon 2014, September 26, Sofia

logname(1) — display user’s login name
slogin, ssh(1) — OpenSSH SSH client (remote login program)
su(l1) — substitute user identity

[.]

4.3 Markup-sensitive arch features
Search kys can be OR’ed by simply joining them with commas, using a common search string for all 3f them:

$ apropos Fa,Ft,Va,Vt=timespec
EV_SET, kevent, kqueue(2) — kernel event notification mechanism
clock_getres, clock_gettime, clock_settime(2) — get/set/calibrate date and time
futimens, futimes, utimensat, utimes(2) — set file access and modification times
nanosleep(2) — high resolution sleep
parse_time(3) — parse and unparse time intervals
poll, ppoll(2) — synchronous 1/0O multiplexing
pselect, select(2) F D_CLR, FD_ISSET, FD_SET, FD_ZERO(3) — synchronous I/O multiplexing
sem_timedwait, sem_trywait, sem_wait(3) — decrement (lock) a semaphore
tstohz, tvtohz(9) — translate time period to timeout delay

[.]

Searching across all macreyk is pssible with the speciainy keyword:

$ apropos any=ulimit
ksh, rksh(1) — public domain Korn shell
sh(1) — public domain Bourne shell
getrlimit, setrlimit(2) — control maximum system resource consumption

Regular expressions are supported by using the * operator instead of ‘=" since October 19, 2013:

$ apropos "Nm™[gs]et.*gid"
endgrent, getgrent, getgrgid, getgrgid_r, getgrnam, getgrnam_r, setgrent, setgrfile, setgroupent(3) — group database operat
getegid, getgid(2) — get group process identification
getpgid, getpgrp(2) — get process group
getresgid, getresuid, setresgid, setresuid(2) — get or set real, effective and saved user or group 1D
setegid, seteuid, setgid, setuid(2) — set user and group 1D
setpgid, setpgrp(2) — set process group
setregid(2) — set real and effective group IDs

[.]

4.4 Complexsearch queries

By default, multiple search terms are joined with OR, but#@nd-S options attach to the rest of the search
expression with AND*

$ apropos -s 1 thl Nm=egn
deroff(1) — remove nroff/troff, eqn, pic and tbl constructs
egn(1) — format equations for troff or MathML
egn2graph(1) — convert an EQN equation into a cropped image
neqn(1l) — format equations for ascii output
tbl(1) — format tables for troff

39. BSDCan 2014 p. 14
40. BSDCan 2014 p. 15

Ingo Schwarze: Let's makmanuals more useful!- 20 - EuroBSDCon 2014, September 26, Sofia

Explicit logical AND and OR are supported:

$ apropos Nd=gigabit —-a Cd=sbus
gem(4) — GEM 10/100/Gigabit Ethernet device
ti(4) — Alteon Networks Tigon | and Il Gigabit Ethernet device
Precedence can be changed with parantheses:

$ apropos -s 1 terminal -a \(At'[1-6] -0 Bx[12] \)
clear, tput(1) — terminal capability interface
lock(1) — reserve a terminal
reset, tset(1) — terminal initialization
script(1) — make typescript of terminal session
stty(1) — set the options for a terminal device interface
tty(1) — return user’s terminal name

Comple search queries are working since January 4, 2014.

4.5 Flexibleoutput format

The names, section numbers, and architectures of the search resultsyseslabwn because these are needed to
access the results with mantiBy default, apropos(1) also shows the one-line descriptions.

With the—O option, aty other macro By an be shown instead:

$ apropos —O Cd wireless
acx(4) — acx* at pci? # acx* at cardbus?
an(4) — an* at isapnp? # an* at pcmcia? # an* at pci?
ath(4) — ath* at pci? dev ? function ? # ath* at cardbus? dev ? function ? # gpio* at ath?
athn(4) — athn* at cardbus? # athn* at uhub? port ? # athn* at pci?
atu(4) — atu* at uhub? port ?
atw(4) — atw* at pci? # atw* at cardbus?

The-O option is &ailable since December 31, 2013.

4.6 Unifieduser interface including man(1)

The very latest delopment is that the mandoc toolboxwnprovides an implementation of man(1) and a unified
interface for mandoc(1), man(1), whatis(1), and apropos(1). That is, all the command line options of all these
utilities are aailable in all of them and & the same meaniny&ywhere, and almost all functionality igailable
from all command namesyan though the default behaviour of the different command names is still different.

4.6.1 Howit works
The nev unified main program wlays uses a five-step process:
1. Decidehow to interpret the command line arguments.
2. Builda list of manual pages, usually from a database search.
3. Decidewhich kind of output to provide.
4. Optionallyspawn a pager.
5

Looparound the list of manual pages, producing some output for each.

41. BSDCan 2014 p. 16

Ingo Schwarze: Let's makmanuals more useful!- 21 - EuroBSDCon 2014, September 26, Sofia

Someinput options are &ailable to specify the meaning of the command line arguments:

-I Interpret each command line argument as an (absolute ovepfdéname. Nalatabase search is done.
This is the default when called mmndoc

* The default when called asan without an input option is to interpret each command line argument as a
name and require exact matches (as opposed to word, substring, or regular expression matches). The default
output mode in this case is to shexactly one manual considered the best match. Curréndse is not
(yet?) ai option to force this behaviouso t’s only available when called asman for now.

—f Interpret each command line argument as a hame and match against complete words (as opposed to substring
or regular expression matches). This is the default when callgladss.

-k Support the full apropos(1) search syntax. This is the default when callpdop®s The default output
mode in these tarcases is to display a list of names, section numbers, and description lines of matching
manuals.

Somedatabase selectiomptions only matter whesl is not acte:

—C Use the specifiefile instead of the default configuration file.

-M Use the specifiegathinstead of the default one. Do not usg eonfiguration file.
-m Use the specifiedathin addition to the default one.

—-S Restrict the search to the specifedhitecture

—-s Restrict the search to the specifiettion

Someoutput options are &ailable to specify which kind of output to provide:

—a Display all matching manual pages, one after the offieis is the default forl input mode.

—h Display only the SYNOPSIS lines of the matching pages. Imphkes

-0 When showing a list irf or —k mode, display the specified macmyknstead of th&ld one-line
descriptions.

-w Display only the pathnames of the matching manual pages.

Someparser and formatter optionsonly tale dfect when a parser is actually run:

-l Override the default operating system name for the md@g)acro.

-m Specify the input format. Defaults tanandoc requesting autodetection.

-0 Comma-separated formatter-specific output options.

-T Select the output format. Defaults-tdascii.

-W Specify the minimum messafgvelto be reported on the standard error output and to affect the exit status.
Defaults to-Wfatal.

Finally, the—c option can be used to suppress the pager and justlmaformatted manuals to standard output.
4.6.2 Howthis came about

Four months back at BSDCan 2014 in @i#ai presented a slide "possible future directions”. This projectnegas
listed. ldidn’t expect myself that i would do this.

But then, on August 9 this year (less than tmonths ago now) Paul Onyschuk of Alpine Linux (which is the first
Linux distro that integrated mandoc, in July 2010) asked ‘#ee there ay plans for providing a man(1) command
also? Thisvould male mdocml a possible, standalone replacement for thé gmdfman-db combination (typical

in Linux distributions).”

Almost, i returned my standardgaive answer but then i stopped short and realized that almost all the needed code
was dready there and it cheaply allows doing fatttings without complexityl had to do the mandoc 1.13.1 and
1.12.4 releases first, so it tookaweeks from the idea to the first working implementation...

4.6.3 What ‘name’ is

This question is critical because the man(1) command is supposed to display manual pages whose names exactly
match the command lineqaments. Théraditional man(1) utility only uses filenames as names in this sense.

When makwhatis(8) runs, it adds names to timmedable in the mandoc.db(5) databases, noting iménees.bits
column of that table where the name came frotiTH header lineNm in the NAME sectionNm in the

Ingo Schwarze: Let's makmanuals more useful!- 22 - EuroBSDCon 2014, September 26, Sofia

SYNOPSIS section, file name). It alsvasithe file names where stubas found into thenlinkstable and links
both tables together (and to tkeystable with all the search terms) via theayestable.

For man(1) mode, right ng, dl types of names are used. That can easily be tuned, and probably it should.

« The name from thBt/TH is probably not all that useful for this purpose because it lacks the case
information.
« TheNm macros from the NAME section should almost certainly be used. Thatihagrd links, symbolic
links, and .so link files become obsolete. Consequeh#ynumber of files in a typical operating system
installation can be reduced by more than three thousands.
« TheNm macros from the SYNOPSIS section should probably not be used for this purpose.
» The file names should probably still be used, just in case someone installs manuals the old way and screws up
the name sections.

4.6.4 Whib issues remain

« The-i (interactve) option hasrt been integrated yet, that code is still kept separately in the manpage(1)
utility which was neer used in ag kind of system integration.

+ Most man.conf(5) features are not supported. The following types of lines are completely ighoiled:
_default, _subdir, _suffix, and sectionlines. Thesearch order 1, 8, 6, 2, 3,5, 7, 4, 9 is hardcoded. Instead of
_default, the_whatdb lines are used. All subdirectories are hardcoddcham,cat}N

When finding a formatted and an unformatted manual of the same name in the same section, the old man(1)
shows the one that was less recently changed. The mandoc man(1) cuneytdypaéfers the unformatted
version, een if it's dder than the formatted version.

« The mandoc man(1) may skh@ome additional results, and some of those may be bogus, if NAME sections
contain bogu$m macros.

« The mandoc man(1) ignores the MACHINE environment variable, and i’'m not planning to add support for it.

4.7 \Web interface for manual search and display

The man.cgi(8) program contained in the mandoc toolbox provides the same user interface as on the command line.
It has a man(1) and an apropos(1) mode, the latter using the same query syntax.

The main additional feature of the web interface are hyperlinks generated for croskrpapel (n-page $x)
cross-references. Thwede has additional potential because it preserves semantic markup, bubthaged yet for
anything except (simple) CSS formatting.

The man.cgi(8) program uses the same directory structure and database format as the command line tools, which
makes setup rather eaggonfiguration instructions are provided in the man.cgi(8) manual.

Of course, setting up a man.cgi(8) server only makes sense for providers of operating systems and of major software
packages having mgmanuals: Danot run your own server with a oppf the manuals of youaf/aurite system,
that would merely add a risk to get outdated and confuse people.

Special thanks goes &bastien Mariéor doing an extenge scurity audit of the man.cgi(8) code and reporting a
considerable number of security-naet bugs that hae dl been fixed by na.

Related timeline:

2011 No 09: kristaps@ starts delopment of man.cgi

2012 Mar 23: first mandoc release containing man.cgi (1.12.1)

2012 Jun 08: kristaps@ starts moving the database backend to SQLite

2014 Jul 09: schwarze@ switchesioman.cgi to SQLite

2014 Jul 12: n& man.cgi running on the openbsdjavebsite

2014 Aug 10: first mandoc release containing the SQLite-based man.cgi (1.13.1)

Ingo Schwarze: Let's makmanuals more useful!- 23 - EuroBSDCon 2014, September 26, Sofia

4.8 Databasémplementation

The oldwhatis.dbwas a pgain text file*?> Now we reed a structured database, but a client-server model would be
overkill and merely a hindrance. So SQl4tevas the logical choice.

The database contains four tables. yftentain, respectely, one record ...

mpages ... per physical page, containing the description

mlinks ... per file system entrgontaining section, architecture, filename
names ... per page name; for all manual page names, not just file names
keys ... per lkey=value pair

The mlinks table has full support for:

« hard links since December 27, 2013
» symbolic links since April 18, 2014
« redirections using the rofso request since March 19, 2014 (used by X.org)

4.9 Seach algorithm
Each search requires eitherotar three querieé?

1. SELECT FROM mpages
to find the pages to be displayed.

Corveniently, searching for descriptions is fastest — in the first step, access one single tatfiedinly the
paged. Searching for names is the second in speed — it requires only a simple JOIN to a small table.

2. SELECT FROM names
to find the page names to be displayed.

This is very fast because it is just a simple SELECT in a small table using thedipdged.

3. SELECT FROM keys
to find the values to be displayed.

Only needed whenO is given. Otherwisewe already hee the description from search step\fery fast,
too, just another simple SELECT inad by paged.

4.10 Optimization
As usual, optimization is not a well-defined task in the mathematical §&isewant high speed and small size:

- a gnall database

- a dhort database build time

« low apropos memory consumption
- short search times

Of course, these optimization goals conflict.

The gprof(1) profiler was used a lot.

42. BSDCan 2014 p. 17
43. http://lwww.sqglite.org/
44. BSDCan 2014 p. 18
45. BSDCan 2014 p. 19

Ingo Schwarze: Let's makmanuals more useful!- 24 - EuroBSDCon 2014, September 26, Sofia

4.10.1 Seah eed optimization

+ Moving thedescriptionsfrom the leys table directly into the mpages table gained rough§ctor 4 in speed
for searches by description — at no cost, the database shrank, too, due to reducedgvhgad @pril 9,
2014)%

» The dedicatedamestable gained roughly factor 4 in speed for searches by name — at almost no cost
(April 9, 2014).

« Adding an ind& to the mlinks table sped up the second step in the algorithm, namevekthig about a factor
of 20, which resulted in arverall 30% economyfor simple searches, and more for searches returning many
results. Theost was a 10% growth of the database (April 16, 2014).

- Adding an ind& to thekeystable sped up the third step in the algorithi®,value retrieval, which is
dominant in-O searches, resulting roughly irfactor 4 speedup of such searches. The cost was another
10% grav of the database.

By providing an SQLITE_CONFIG AGECACHE with mmap(3) MAP_ANON,»&cution time decreased

by 20-25% for simple (Nd and/or Nm) queries, 10—-20% for non-NAME queriesyandmgopos(1) resident
memory size decreased by 20% for simple and by 60% for non-NAME queries. Cache size is a compromize
to provide nearly optimal speed gain for all queries while limiting additional memory consumption to about
15% (April 11, 2014).

4.10.2 Databasbuild time optimization

This is releant because mandoc.db(5) is built during regular base system and Xenocara snapshots builds on all
architectures, and we damvant to slev down devdopers during deslopment and testingy.

« Quick mode: Abort parsing after the NAME section: factor 2 in speed and factor 4 in size (January 5, 2014).
In the following, all speedups refer to quick mode.

- Do not sync to disk after each individual manual page, only sync to disk one single time when all data is
ready: 87% (January 6, 2014).

« In quick mode, do not clear user-defined macros clashing with mdoc(7) or man(7) standard macros when
parsing .Dd or .TH: 25% (January 6, 2014).

« In quick mode, do not validate and normalize the date format: 18% (January 6, 2014).

- Do not coy predefined strings into the dynamic string table: 10% (January 6, 2014).

« Cache uname(3) result: 3% (January 7, 2014).

- Do not inde& the keys in the keys table: 12% (and 42% size reduction) (January 18, 2014).
+ No primary leys in the mlinks and &ys table: 15% (and 3% size) (January 18, 2014).

- Properly handling .so redirections reduced Xenocara database build time by 40% and database size by nearly
50% (March 19, 2014).

46. BSDCan 2014 p. 20
47. BSDCan 2014 p. 21

Ingo Schwarze: Let's makmanuals more useful!- 25 - EuroBSDCon 2014, September 26, Sofia

4.10.3 Databassize optimizations
All size reductions refer to quick modf@.

- Do not store the descriptions twice, once for searching and once for degteyexpense of somewhat more
complicated, but not slower search code: 9% (January 5, 2014).

« Remore the redundant "file" column from the mlinks table: 9% (January 5, 2014).
« Sort macro kys by frequency: 11% (January 18, 2014).
+ Always store the arch in lower-case only: 1.5% (January 19, 2014).

4.10.4 Seah and database performance summary

With the old, plain text apropos(1), a simple search took about 10 milliseconds on my nétabidbkhe nev,
SQLite apropos(1), it is umeidably slower due to the SQlverhead and because the names aveseparated from
the descriptions. It e takes about 40 milliseconds. Hovee the difference is of no practical refiace &en on
moderately old hardware.

Base system database size grows from 250 kB to 900 kB (quick mode) or about 3800 kB (fully featured mode).
That is not a practical problem foryaof our architectures. During system builds, database build times are reduced
by roughly a factor 3 with respect to the old Perl evdiatis(8).

48. BSDCan 2014 p. 22
49. BSDCan 2014 p. 23

Ingo Schwarze: Let's makmanuals more useful!- 26 - EuroBSDCon 2014, September 26, Sofia

5. Integrating mandoc as a base system documentation formatter

5.1 Preparations
5.1.1 Peliminary note

More than three years ago, when summarizing the status of tfitografndoc switch at BSDCan 2011, i already
said this®®

In OpenBSD, we ne reached the stage: It jusbrks. T get there, we
- re-implemented a small family of languages.
- turned the whole paradigm of these languages upside down.
- remained compatible where it matters.
- flouted compatibility that would just hinder.
Other systems can wado the same, if thewant:
+ without much risk.
« without having to fear major surprises.
. getting support from us in case of need — just mail us!

Meanwhile, NetBSD and illumos & swvitched from grofto mandoc, too, in 2012 and 2014, respegtyi So you
certainly dont haveto fear the switch, neadays. Justollow the plan laid out bele.

5.1.2 Gettingstarted

The first step is to import the mandoc codebase into the base repository of the target operating system, collect some
initial experience using it, and enable it to be built and installed by default.

The most important aspect of this phase is to establish the contaetytooely in the operating systesrievdoper
community who is interested and might wish to helved. Gefamiliar with specific requirements of the system
and an specific topics the delopers are concerned about. Do not neglect this aspect or it will bite you later.

This phase also provides a great opportunity to find bugs in mandoc, to report them, and to get them fixed, without
ary of the stress that might arise from already being in productiowenrfeom having made specific plans when to
go into production.

5.1.3 Casestudy: OpenBSD

In OpenBSD, this phase lasted from June to December®2@&&ause mandoc has matured since that time, all this
ought to be much easierwo In any case, this phase can be short&art the next phase earlywill help you to
find bugs and to focus on the most vele ones??

In OpenBSD, we also used this phase to start a regressiofditirst, naturally we encountered lots of mebugs

and fev regessions. ConsequentButomatic tests were not a prioritidloweve, we garted collecting anywayAs

the code matured, the number of tests slowly increased, and the suite slowly became more important. Maintenance
was done at intervals to keep the suite neat and tidy asvit gre

Already in 2011, the suite regularly caught issues when doing majgemelttook less than tavyears for the
continuous effort to start to payfofBy naow, the suite is an indispensable tool used wherapplying ary changes
to the mandoc codebase.

50. BSDCan 2011 p. 20
51. BSDCan 2011 p.5

52. BSDCan 2011 p. 10
53. BSDCan 2011 p. 22

Ingo Schwarze: Let's makmanuals more useful!- 27 - EuroBSDCon 2014, September 26, Sofia

Having that suite\ailable on your system would definitely be helpful. Unfortunatalgortable version of the
regression suite does not ygtst. Settingt up would be a worthwhile project. Idealthe tests should not be

copied; thg would quickly get outdated and require constant maintenance. Ratbeshould try to provide

Makefile fragments (or something similar) to help the OpenBSD suite to run on other systems, at least on those
having a BSD make(1).

Related OpenBSD timeline:

2008 N 22: first commit to mdocml.bsd.lv by kristaps@

2009 Mar 27: first direct commit by schwarze@ to OpenBSD (not mandoc)
2009 Apr 06: mandoc imported into OpenBSD by kristaps@

2009 Apr 15: first help from another OpenBSDRdeper (miod@)
2009 May 23: schwarze@ first talks to jmc@ about mandoc

2009 May 31: at c2k9 in Edmonton, schwarze@ talks to deraadt@
2009 Jun 09: kristaps@ agrees to work closely together

2009 Jun 14: merge to OpenBSD started by schwarze@

2009 Jun 15: first patches merged back from OpenBSD to bsd.lv
2009 Jun 21: mandoc usable in OpenBSD and in sync with bsd.lv
2009 Jun 23: bugfixing in OpenBSD started by schwarze@

2009 Jul 05: OpenBSD 4.6 release rolled without mandoc

2009 Jul 12: joerg@ sends his first patch from NetBSD

2009 Jul 18: ugs@ sends his first patch from FreeBSD

2009 Oct 27: start src/regress/usr.bin/mandoc

2010 Jan 02: start of systematic integration

2010 Jun 30: major update of the mandoc test suite

2010 Jul 01: enable mandoc regression tests; ok phessler@
2010 Dec 04: major additions to the regression suite

2011 Feb 05: commit mgmegession tests found in my trees

5.2 Identify fatal issues

Try to build all manuals of the target operating system with mandoc. Ignore all non-fatal issues. fé&teport all
fatal errors to the mandociopers. Hae them fixed upstream or devis®@fkarounds. W ae glad to provide
help! Onlyas a last resort, change the affected manuals in you¥tree.

5.2.1 Casestudy: OpenBSD

In OpenBSD, this phase took place in January and February’28ii.e mandoc hardly throwsyafatal errors any
longer this phase ought to be much easievatays. Nonef the fatal errors that held us back in OpenBSD in 2010
and that i listed in my 2011 BSDCan talk is still fatal tod@ge mandoc parser iswable to recwer from all of

them and keep going, so theould all be downgraded to non-fatal errors and sorae ® mere warnings.

Related timeline:

2010 Jan 02: first patches to mdoc(7) manuals to fix the build with mandoc
"Fine. Even if mandoc goes nowhere, it has found some bugs. ;)" jmc@
2010 Feb 17: first patch to a man(7) manual in order to fix the build

2010 Feb 20: found first manual bug caused by DocBook

2010 Feb 24: first non-fatal manual fix found by -Tlint

2010 Feb 25: tree mobuilds with mandoc

2010 Mar 18: OpenBSD 4.7 release rolled without mandoc

54. BSDCan 2011 p. 10
55. BSDCan 2011 p. 6

Ingo Schwarze: Let's makmanuals more useful!- 28 - EuroBSDCon 2014, September 26, Sofia

5.3 Investigate non-fatal errors

Runmandoc -Tlint -Werror on all manuals in your system. Prioritize fallout that ruins content or formatting.
Distinguish mandoc bugs from markupgs. Reportmandoc bugs upstream.

The most serious issues showing up in this phase typically do so in man(7) manuals, not in mdoc(7) manuals. This
is not a coincidence. While the mdoc(7) language is powerful enough to express all formatting that might
reasonably be wished for in a manual page, the same is not true for the man(7) language. Even in a well-written
man(7) manual, it is unvaidable to resort to the use of some loweleoff(7) formatting instructions.

Many lower-quality man(7) manuals, in particular those generated from other input formats by automatic translation
tools, use elaborate lowdd roff constructions, some of which mandoc(1) may not yet support. Most of these will
shav up as unknown macros” imandoc —Tlint output, and output formatting may or may not be degraded.

Please report those "unknown macro” errors you find in real-world manuals to the mandetgppde— unless

they are mere typos in request or macro names, of course.

The remaining subsections of this section discuss particular classes of "unknown macro” errors encountered when
integrating mandoc(1) into OpenBSD. The problems discussed here were solved in 2010. So if you are only
interested in integrating into awlatform, and not that much in mandoc(1) architecture amdaf@ment, you can

safely skip these subsections.

5.3.1 Supportinghe pod2man(1) preample

The pod2man(1) utility is one example of a documentation format translation prdgtaakes documentation in

the perlpod(1) format, which is an acronym for "plain old documentation”, and translates it to man(7) code. Every
manual page written by pod2man(1) starts with a document preamble ol/Ewef§7) code. The preamble varies
from one Perl version to anothéeut is the same forvery manual written by the same Perl version.

Here is some example code from a pod2man(1) preamble:
$ | ess perl.1

[...]

.de Sp

ft.sp .5v

ifn.sp

.de Vb

ft CW

.nf

.ne \$1

dsC+C +

This code uses various lowvk roff requests: strings definitions (.ds), macro definitions (.de), conditional requests
(.ify and so on.

When integrating mandoc(1) into OpenBSD in 2010, there was no chance to get all that implementedSguickly
we went for a temporarguick and dirty solution: W dd not implement the low-iel roff requests being used, but
instead added explicit support for the strings and macros this We@hcterle defines. The strings were hardcoded,
the macros implemented as if yh@ere man(7) macros, and the rest of the lovetlinstructions were merely
parsed an ignored. That was sufficient because the preamhbi@ys #he same.

That way it was possible to get all man(7) manuals to work with mandoc(1), without changinfthe manuals in
ary way.
About half a year latesupport for string and macro definitions was implemented and the temporary workarounds

could be remeed. Sotoday you wont encounter the same issues again, but of course, you may run into other
roff(7) features unimplemented in mandoc(1) that other man(7) code generators happen to use.

56. BSDCan 2011 p. 9

Ingo Schwarze: Let's makmanuals more useful!- 29 - EuroBSDCon 2014, September 26, Sofia

5.3.1.1 Casstudy: OpenBSD

Related timeline:

2010 Mar 01 implement pod2man(1) pseudo-macros

2010 Sep 20 mandoc canwbandle the standard pod2man preamble
2010 Nw 28 remorve the pod2man(1) pseudo-macros

5.3.2 Thanandoc(1) tbl(7) implementation

Another area where issues might surface is in manuals using the tbl(7) language to format tables. This language is
used in a relately small number of pages, so itveereceved as nuch attention as the mdoc(7) and man(7)

languages. Althe same, most tableswdormat just fine, so you may getay without issues in this area. If you

do run into unimplemented features or formatting bugs in your tree, please report to the megidperde

5.3.2.1 Casstudy: OpenBSD

In the OpenBSD base system, only a dozen pages use’filfen switching the build of all other pages to
mandoc, we at first continued to format this dozen withf dpefause mandoc did notveetbl(7) support at the time.

We long aroided the task of dealing with this handful of pagesnehough Kristaps had written a stand-alone
implementation of tbl(7) months before. This concerned only a very small number of manual pages, and it was
unclear ho to best integrate the tbl(7) parser and formatter into mandoc. Eihd®#jiberately chose the minimal
route: | hooked the code directly into the highelgparsers. Thatvay, | got a working integration within a single
weekend and immediately relied on it for production.

Kristaps implemented a better way later: Parse tbl(7) block macros onfthevdptthen call the tbl(7) parser from
the main program just lékin the case of mdoc(7) and man(7). The same approach was later used for rudimentary
eqgn(7) support.

Related timeline:

2010 May: stand-alone implementation of tbl started by kristaps@

2010 Aug 12: OpenBSD 4.8 release rolled with mandoc

2010 Oct 15: import tbl parser and renderer written by kristaps@

2010 Oct 17: build tbl(1) pages with mandoc(1), not groff

2010 Oct 18: disconnect gfdfom the base build

2010 Oct 18: "I absolutely darintend to merge tbl into mandoc" kristaps@
2011 Jan 04: clean tbl integration by kristaps, nmine

2011 Mar 20: rudimentary eqn support by kristaps@

2011 Jul 24: complete basic support for equation blocks

5.3.3 Thalesign of mandoc(1) beyond mdoc(7)

The mandoc(1) program is not only intended as a formatter for the mdoc(7) language, but aims to format all
contemporary man(7) manuals, too, amehdhistorical ones back to AT&T Version 7 UNIX.

Kristaps’ original design intended to forget about the complete bottom layer and only implement theehigh-le
mdoc(7) and man(7) macrégHowever, snce all man(7) manuals use at least some loa-teff(7) features, and
mary use more than tlyeshould, it turned out that does nobik. Thereis no way around implementing some low-
level roff requests.

Realizing that was a sl painful process that dragged oweomary months. Finallywe reluctantly edged in
some low-lgd roff support. Complgity was kept to the bare minimum.

Both steps hae poven to be jst right: Starting from the highve gavea dean design. Our reluctance to support
low-level roff(7) prevented us from getting dfrack. Afterwe had put in some lowatel roff support as a late
addition, we were surprised\udittle change was required to theemall design.

57. BSDCan 2011 p. 18
58. BSDCan 2011 p. 12

Ingo Schwarze: Let's makmanuals more useful!- 30 - EuroBSDCon 2014, September 26, Sofia

The original mandoc main program lookedklikis>®

« main loop to read input files

« push line after line into the parser backends

- parsers look for high-el macros, e.g. mdoc(7)

- call the formatting frontend on the resulting syntax tree

When edging in low-ieel roff support, this design was changed as follows:

« main loop to read input files

- call the roff preprocessor on each line

« push line after line into the parser backends

- parsers look for high-el macros, e.g. mdoc(7)

- call the formatting frontend on the resulting syntax tree

So there is a stunning paradigmatic switch. Classichimgflementations first expand all highvdbmacros into
low-level requests, then pass the lowderequests into the formatters. All structural information is lost long before
the main parserBy contrast, mandoc first handles the lowdeequests in a preprocessihien passes the

remaining high-leel code to the parsers. Structural information is kephéf it is originally intermixed with low-

level roff code.

Here is a list of roff(7) requests and their st&fus:
« mostly complete implementations in 2011:

« string definitionsds
- macro definitionsde rm
- source file inclusionso

- additional mostly complete implementations today:

« string definitionsas tr

+ macro definitionsam ami dei

- conditionalsif ie el ig

« register definitionsar rr

- input line trapsit

» changing the control charactec

« ignored requests:

- adjustmentad ce ta

«+ spacingne ns pl

« hyphenationhy nh hw

« character formattingps fam

The man roff requests not mentioned here are still unimplemented, but rarely occur in real-world manuals.

Related timeline:

2010 Apr 25: implement rbEonditional request for man(7) only
2010 May 15: mandoc riifibrary started by kristaps@

2010 May 19: the rétibrary replaces my preliminary support for conditionals
2010 Jul 03: rudimentary implementation of user-defined strings
2010 Sep 22: interesting commit message: no hope for .de

2010 Nw 25: implement the .de request (define macro)

2010 Dec 01: implement the .so request (include source file)
2011 Jan 16: implement the .rm request (negnmoacro)

2011 Jul 28: implement the .tr request (translate characters)
2012 May 31: implement the \z escape sequence (zero advance)

59. BSDCan 2011 p. 13
60. BSDCan 2011 p. 14

Ingo Schwarze: Let's makmanuals more useful!- 31 - EuroBSDCon 2014, September 26, Sofia

2012 Jun 12: implement the .cc request (change control character)
2013 Mar 21: implement number registers (Christos Zoulas, NetBSD)
2013 Apr 03: support simple numerical conditions (Christos Zoulas, NetBSD)
2013 Jul 13: implement the .it request (input line trap)

2013 Dec 15: implement increment and decrement in .nr

2014 Jan 22: implement the \: escape sequence (optional line break)
2014 Feb 14: implement the .as request (append to string)

2014 Mar 08: implement string comparison in conditionals

2014 Mar 30: implement the .1l request (output line length)

2014 Apr 05: implement the .rr request (remcegster)

2014 Apr 07: implement indirect references in string expansion

2014 Apr 07: almost complete implementation of numerical expressions
2014 Jul 07: implement .dei and .ami (indirect macro definitions)

5.4 Checkmandoc output

For the manuals in your tree, systematically compare groff(1) and mandoc(1) outpwgmdifietool in the
mdocml.bsd.lv repository can help with thdb reduce noise to manageableds, look at the patches to
textproc/grof in OpenBSD ports.For example, thg disable adjustment and hyphenation, mphkge header lines
agree with mandoc, and rewgothe special handling of theafPracro in the FILES section. The comparison will
not be quite easy because there are still some trivial differences, most of glaetimgewhitespace. That is,

mandoc and grébutput will not be completely identical, but try to neadire no content gets lost and no formatting
is completely garbled.

If you find ary serious issues, report them, in particular if mandoc(1) fails to flag them aSERRtching
manuals is usually not the right approach in this phase.

Quickly move m to the next phase, that is, when you are convinced there are no show-stopper issues, not when you
feel everything is perfect! Your system will mature best whersignabled by default and when you get and use
real-world feedback.

5.4.1 Casetudy: OpenBSD

In OpenBSD, such comparisons were done as an veraticess in seeral cycles? Comparisons were first run on
a gnall part of the tree. Some parsing and formatting issues were identified w&heprioritized by a rough,
inexact estimate of frequepnend seerity. Some of them were then fixed in mandoc(1): Sufficiently tieat we
didn’t lose too much time; sufficiently mato sgnificantly reduce the noise. Then, we starteer aith a larger
part of the tree.

Related timeline:
2010 Aug 15 systematic bug hunting in /bin and /sbin
2011 Jan 23 systematic bug hunting in /usr/bin

5.5 Watch out for local features!

The major BSD trees forked from each other aboatdecades ago, and one gagf groff has dwelt in each of
them for that long time. Chances are it has been locally patched at least in sqaravlag local manuals rely on
such patches. The manuals in a BSD tree might also use internal features wévgnatieversion may be around.

When trying to switch from gréfo mandoc, you will probably bump into such features because mandoc is not
likely to support whateer localisms hae devdoped in your tree.

If you can easily patch such featur@gg in your manuals, you should probably do that because it wilerpailr
manuals more portable, not just to mandoc, et ¢ aher breeds of gr&f However, that may not be possible. In
that case, please talk to the mandogeligpers, and we will see what we can do to rescue your local quirks.

61. BSDCan 2011 p. 10
62. BSDCan 2011 p. 16

Ingo Schwarze: Let's makmanuals more useful!- 32 - EuroBSDCon 2014, September 26, Sofia

5.5.1 Casestudy: OpenBSD

Such home-grown non-standard features exist & OpenBSD?3 The worst one is related to SYNOPSIS
formatting: An internal rdfregster that is specific to the pre-1.17 dlimhplementation is used to switch on and off
SYNOPSIS mode in kernel manuals having the synopsis split masearts. We had no reasonable choice but to
support this in mandoc(1)yen though what these manuals do is an incredibly dirty hack.

5.6 Switchover to build with mandoc

Once mandoc(1) is ready to build all of your tree and no show-stopper issues are left, you can do the switch to use it
instead of grdffor building your manuals. Choose the timing wisédliyake aure there is plenty of time until the

next release. Rushing this change in shortly before a release would be a b&hiadedting quality of manual

pages is not among the things people focus on during release testing, so chances are issakried wont be

found before release, and once the release is out of theyda@nd up in a rather awkward situation thagird to

fix.

After switching the build, watch out for bug reports from users of the -current code. Report and fix bugs as quickly
as possible.

The switch itself can be done in one ootgeps. OpenBSMid it in two geps: The formatter was switched from
groff to mandoc in April 2010. Source manuals are installed instead of preformatted manuals since October 2010.

NetBSD did it in one step in February 2012, switching both the build system to install unformatted instead of
formatted and changing the manual formatter fromfgoahandoc in man.conf(5) at the same time. If you feel
confident you can manage the one-step process, i recommend yoithelexample of NetBSD. Neadays,
mandoc(1) is mature enough to rely on it as a run-time formatter vigkit asuming you ha dne the necessary
testing for your particular system as described in the lastdetions.

5.6.1 Casestudy: OpenBSD

Mandoc was ready for production right before the OpenBSD 4.7 release was*:Hgeduild was switchedver
right after the tree unlocked after the release, so there was as much time as possilalotat fiBtigreports from
real-world users started coming in at once. Priority waengb these bug reports. All serious fallout fixed within a
few days. Lotsof time was left for polishing before the next release.

Related timeline:

2010 Mar 01: mandoc ready to build the tree

2010 Mar 18: OpenBSD 4.7 release rolled without mandoc

2010 Mar 20: Xenocara canwduild with mandoc as well

2010 Apr 02: link mandoc to the OpenBSD build

2010 Apr 03: switch base build to mandoc, excepting tbl pages

2010 Apr 03: fix all fatal issues where mandoc kills ports builds

2010 Apr 04: first port maintainer explicitely switches to mandoc
2010 Apr 04: fix first mandoc bug that was found by ports usage
2010 Apr 05: espie@ implements USE_GROFF fraank and groff-1.15 port
2010 Apr 07: first major merge from bsd.lv after the switch

2010 Apr 08: first mandoc bugfix found in ports propagates upstream
2010 Aug 12: OpenBSD 4.8 release rolled with mandoc

63. BSDCan 2011 p. 15
64. BSDCan 2011p. 11

Ingo Schwarze: Let's makmanuals more useful!- 33 - EuroBSDCon 2014, September 26, Sofia

5.7 Lessondearnt from the replacement project
5.7.1 Badpatches trigering good ones

During the replacement project in OpenBSD, we put preliminary code into production on multiple occasions and
later on ripped it out agafif.That may seem inefficient at first, but actually & gerfectly sane approach: The first
implementation explores the feature. The second implementation gets it right. Jukttdbe’ first one sprawl

until it cant be iipped out ap more.

This approach got used in at leasefoases:

2010 Mar 01 - May 14: end of sentence detection
2010 Apr 25 - May 19: réftonditionals

2010 Mar 01 - Sep 20: pod2man preamble

2010 Jun 16 - Jun 27: fokgsters

2010 Oct 15 - Jan 04: tbl integration

5.7.2 Cleardesign works even for dirty langyes

For the reasons explained in the introductory section of this pidygemdoc(7) language is the best todilable for
writing documentation, and mgattempts to design something bettevéndailed. Somdoc(7) is an excellent tool
for its job, but that doesnimply much about the quality of the language from a software engineering pe®specti

Actually, the design of languagesdikndoc(7), man(7), roff(7), tbl(7), eqn(7) isnhe latest and greatest in software
engineering. Aftenll, the youngest of these languages & about 25 years old, and the concepteehevolved
(and required some compatibility) for another 25 years before that.

All the same, the mandoc project has shown that it is possible to design and implemently @é&stn compiler
even for a set of somewhat dirty languages.

We garted coding with the nice highvig stuff.®® That gaveus a very cleanverall design. We adged in low-leel
ugliness lateronly where it is required. It has pren possible to edge in low-el features een while the tool was
already in production, but only because we kept all parts small and simple. In a large and systgrie changing
the basic design in an afterthought would no doubt break the system.

Two reasons to shun complexity are well known: It is the enemy of correctness and .sétwitye, here we hae
seen that keeping down complexity is also critical for flexibitlyich is a third reason that i guess fewer people are
awae of.

5.7.3 Muwe fast!

A replacement project has the best chances to succeed if you quickly put your work to real-wWéisbuset. let it
rot in a corner of the OSKeep moving fast, do not fear change.

Only male sure you dort trap your users with incompatible chang&su won't find users when you break
behaviour And you wont find bugs when you darnhaveusers.

65. BSDCan 2011 p. 23
66. BSDCan 2011 p. 24
67. BSDCan 2011 p. 25

Ingo Schwarze: Let's makmanuals more useful!- 34 - EuroBSDCon 2014, September 26, Sofia

6. Integrating mandoc as a ports documentation formatter

6.1 Handlingmanual pages in ports

TheLaw of Featue Qreepis quite well-known in general: If a software offers some feature, sooner or later
somebody will use

It allows an easy corollargpplying it to the documentation of portable software: Feryefeature of the roff
language (and forvery groff extension), no matter koarcane and he obviously irrelevant for manual pages,
sooner or later somebody will want to port a third-party software abusing that feature to format its manual pages.

That is unfortunate because mandoc(1) is not a completa mgEmentation and it is not clear that it wikeebe.

In the base system of an operating system, this is not a probleen:ainite set of manuals, all the required
features can be implemented in mandoc(1), or alteehgtit is possible to patchveay the worst abuse in the
handful of manuals affected.

But in ports, “mandoc or nothing” is not a viable strategy: That would inevitablg iea with some seriously
misformatted manuals, and in some cases with no usable manuals at all.

6.2 TheOpenBSD solution for manual pages in ports

The following strategy has been designed and implemented by Marc Espie, and ivaasgmosturdy and very
easy to usé®

Make aure that no port tries to preformat manuals during the butgtal etevey port install manual page sources
during the fak install target.

For the majority of ports, mandoc(1) can handle all manuals: Fhayou are done with respect to these.

For the remaining minority of ports: Set a special boolean make(1) variable in the port Makefile, in OpenBSD called
USE_GROFF That variable implies a build dependgrm the grof port. Whenbuilding the package, the ports
framawork runs grof on the fly and packages the preformatted pages instead of the sourcé&pages.

After installing the packages, this will work just fine at run time: The preformatted pages will be diplayed directly
by man(1), and man(1) will format the source pages with mandoc(1), with no dedicated configuration.

For example, in OpenBSD in the spring of 2014 there were 7952 ports, 1217 of which still USE_GROFF (15%).
Some of these probably donéally need it, but there is no hurrRemoving USE_GROFF needs a manual check —
which was already done for about 3000 ports during the last three years. Instructiomagadoie for checking

ports in this respedt.

6.3 Features that help, in particular for ports

Obviously the more manuals mandoc(1) can handle, the easier will all this become. As explaimedsaye of
low-level roff(7) features causes most of the problems. Consequ#émlgngoing efforts to impve low-level
roff(7) support help ports in particular.

The following features of this kind e been added to mandoc(1) during the last years’?

« Indirect references in roff(7) expansion since April 7, 2014.

68. BSDCan 2014 p. 30
69. BSDCan 2014 p. 31
70. BSDCan 2011 p. 19
71. http://www.openbsd.org/fag/ports/specialtopics.html#Mandoc
72. BSDCan 2014 p. 37

Ingo Schwarze: Let's makmanuals more useful!- 35 - EuroBSDCon 2014, September 26, Sofia

Expansion of roff(7) number registers since March 21, 2013 (Christos Zoulas).

Almost complete support for roff(7) numerical expressions since April 7, 2014.

Numeric comparison in roff(7) conditionals since April 3, 2013 (Christos Zoulas).

String comparison in roff(7) conditionals since March 8, 2014.

» Newly supported roff(7) requests:

as append to string

cc change control character
it setinput line trap

Il change output line length
rr remove regster

tr translate characters

+ newly supported-man-extmacros:

EX/EE example display

OP optional element

PD paragraph distance
UR/UE uniform resource identifier

6.4 makewhatis(8) in ports

Base and X manual databases are essentially St&tit.packages get installed and deinstall¥du could wait for
the periodic weekly(8) mahatis(1) rebild. A better idea works as follows:

« During pkg_add, rumakewhatis —d/usr/local/man files ...
» During pkg_delete, rumakewhatis —u/usr/local/man files ...

This is done routinely on OpenBSD, and it works seamlessly with thenagewhatis. Soright after pkg_add(1),
you call apropos(1), and it finds the freshly installed manual pages.

6.5 Moving groff to ports
This move requires tw prerequisites:

1. All manual pages in the base system need to format properly with mandoc, and man.conf(5)etmshha
switched oer to use mandoc to format manuals by default.

2. TheUSE_GROFF infrastructure must beitable in the ports franweork, and all ports that va rot been
checked to work with mandoc mustvieahe USE_GROFF Makefile variable $&t.

6.5.1 Casestudy: OpenBSD

In OpenBSD, the ma d groff from base to ports was done right before the 2010 ports hackathon, so there was
plenty of time to deal withallout. Andindeed, it turned out that was needed.

1. With respect to item 1 ale, we were late to realize that the X11 manuals use thesodffle inclusion)
request. lwas implemented in a hurry after the weowas already done, so X11 manuals were briefly broken.

2. With respect to item 2 akie, the ports tree and the gfgirt had already been prepared by Marc Espie.
Several porters immediately started movingepports to mandoc on a case by case basis. Consequently,
several bugs were reported in mandoc. Once again,avegyiority to fixing such real-world issues.

73. BSDCan 2014 p. 32
74. BSDCan 2011 p. 19

Ingo Schwarze: Let's makmanuals more useful!- 36 - EuroBSDCon 2014, September 26, Sofia

Related timeline:

2010 Aug 12: OpenBSD 4.8 release rolled with mandoc

2010 Oct 18: disconnect gfdfom the base build

2010 Oct 19: switch default /etc/man.conf to mandoc

2010 Oct 23: schwarze@ at p2k10 hackathon in Budapest
2010 Oct 26: support .so (lowvig roff "switch source file")

2010 Oct 27: OpenBSD port&\® section about mandoc and groff
2010 Oct 29: landry@ performs the first major USE_GROFF vamo
2010 Oct 29: millert@ renwes mlcrt(1), checknr(1), soelim(1)
2011 Feb 07: use mandoc in Xenocara lenaklds

2011 Mar 02: OpenBSD 4.9 release rolled without groff

2011 Mar 12: cvs rm groff

2011 Mar 19: update ports gféfom 1.15to0 1.21

2011 Apr 24: tweak mandoc to conform to newestfdralbits

2011 Apr 26: fixed groff-1.21 wocation for Imale ports

6.5.2 Benefitef the move

While moving grof from the base system to ports certainly brings benefits for the base system, in particular a
reduction of GPL and C++ code, it also has important advantages fbroyen$:

« In the base system, you are stuck with the last gesion released under GPL v2, which is groff-1.19.2
released in 2005, but in the ports tree, GPL v3 db&art as much.

+ Even the license issue aside, it is much easier to keep softwalepael externally up-to-date in the ports
tree than in the base system.

Newer grof has mag new features, for example:

. groff-1.20 (Jan. 2009) added preconv(1) for Unicode/wide character suppera| $&calization packages,
XHTML support, a MathML output device for eqn(1), the chem(1) preprocessor for pic(1y,raltie
package, and mgrsmaller features.

. groff-1.21 (Dec. 2010) added support for japanese manual pages.
. groff-1.22 (Dec. 2012) added gropdf(1) and pdfmom(1) to directly generate PDF output.

6.6 Summary:step by step instructions
1. Buildand commit a textproc/grigport (version 1.22.2),ven if you hare goff in base’

2. Introducehe USE_GROFF port Makefilaxiable. Tigger a grofbuild dependencfor USE_GROFF.
Implement format-on-the-fly for USE_GROFF and install formatiithout USE_GROFFRnstall source
manuals. Ry attention to get packing lists right.

3. Safeway: Turn USE_GROFF on for all ports having manuals. Shortcut: Skip those thahaesit in
OpenBSD.

4. Remee goff from base.

Startremoving USE_GROFF on a case by case bdside extra safe: Only do it for ports having no mandoc
ERRORs and identical output with grahd mandoc.

6. Thisis another critical phase: Stay tuned for bug reports from users and work with upstream to get them
resolved.

In OpenBSD, this happened in October 2010.

75. BSDCan 2011 p. 19

Ingo Schwarze: Let's makmanuals more useful!- 37 - EuroBSDCon 2014, September 26, Sofia

7. Statusand next steps

7.1 OpenBSD
7.1.1 Status

. Kristaps@ deeloped mandoc(1) since Nember 22, 2008°
« Source code in the base repo since April 6, 2009.
« Schwarze@ maintaining it since June 14, 2009.
- Actively maintained regression suite since October 27, 2009.
- mandoc(1) installed with OpenBSD-current since April 2, 2010.
- Base system manuals built with mandoc(1) since April 3, 2010.
« USE_GROFF frameork for ports by espie@ since April 5, 2010.
- Releases fully rely on mandoc(1) since OpenBSD 4.8giber 1, 2010.
» Groff disconnected from base build since October 18, 2010:
mandoc(1) is the only documentation formatter in base for almost four years.
» Groff removed from the source tree since March 12, 2011.
- Groff 1.21/1.22 mailable from the ports tree since March 19, 2011.
- No stable releases contain drsiice OpenBSD 4.9, May 1, 2011.
- Install manual sources, not preformatted manuals since June 23, 2011.
- SQLite-based code in the source tree since December 30, 2013.
- makewhatis(8)/apropos(1) using mandoc since April 18, 2014.
« New man.cgi(8) running on openbsdgasince July 12, 2014.
« All will be released with OpenBSD 5.6 on anber 1, 2014.

7.1.2 Pssible futue drections
- Replace the traditional BSD man(1) implementation with the one from the mandoc toolbox.

- Switch the default output mode frofTasciito —Tlocale. That does no harm when using the POSIX
locale(1), and it helps people using UTF-8 locales.

- Integrate preconv(1) into mandoc(1) for better UTF-8 handfing.

« Improve ppd2mdoc(1) to better support perlpod(1) to mdoc(7) transitions, in particular for the LibreSSL
manuals.

« Support automatic semantic enrichment of Perl manuals with pod2mdoc(1). I'm not yet sure this is
practicable, i just an idea so far.

« Support transitions from man(7) to mdoc(7) with doclifter(1) and docbook2mdoc(1).

- Unify parsers, allowing more lowatel roff(7) improvements.

76. BSDCan 2014 p. 25
77. BSDCan 2014 p. 39

Ingo Schwarze: Let's makmanuals more useful!- 38 - EuroBSDCon 2014, September 26, Sofia

7.2 NetBSD
7.2.1 Status

- A pkgsrc mdocml port by JgrSonnenberger exists since March 1, 2009.

This implies support fomanyadditional platforms.

The current version is 1.13.1 since August 10, 2014 (Thomas Klausner).

The first code patch was sent upstream by $6nnenberger on June 11, 2009.

» Source code in the base repo and installed by default in NetBSD-current since October 21, 2009.
- Big changes on February 7, 2012:

« Install source manuals, no longer install preformatted manuals.
« Use mandoc(1) as the default run-time manual formatter instead of groff.
« Use makemandb(8) by Abhm&padhyay instead of mahatis(8) together with versions of
apropos(1) and whatis(1) based on it, featuring full text search, but not semantic search.
« All this was first released with NetBSD 6.0 on October 17, 2012.

Semantic searching is not yet supported, wet @s an ption.
7.2.2 Recommende@xt steps

» Upgrade base system version to 1.13.1.

- Integrating semantic search support is a serious problem because it is completely incompatible with the
existing makemandb(8) which also uses SQLite3 but dbasa’'the strengths of mdoc(7) inyamay.
Unfortunatelyi must admit i hae ro idea hav this dilemma might be solved.

7.3 FreeBSD
7.3.1 Status

- An mdocml port by Ulrich Spérlein exists since March 9, 2609.

- First code patch sent in by Ulrich Spdrlein on July 18, 2009.

« Source code in the base repo and installed by default since October 19, 2012.
« First released with FreeBSD 10.0 on January 20, 2014.

- mandoc(1) is installed, but not used.

- Semantic searching is not yet supported, met @s an ption.

7.3.2 Recommendedxt steps

- Upgrade base system version to mandoc-1.13.1.
- Switch base system to use mandoc by default.

7.4 DragonFlyBSD
7.4.1 Status

- Source code in the base repo and installed by default since October 27, 2009 (Sascha Wildner)
- First released with DragonFly BSD 3.6.0 on March 28, 2010.

- First code patch sent in by Franco Fichtner omddtber 25, 2013.

- mandoc(1) is installed, but not used.

- Semantic searching is not yet supported, met @s an ption.

7.4.2 Recommendext steps

- Upgrade to mandoc-1.13.1.
- Switch base system to use mandoc by default.

78. BSDCan 2014 p. 26
79. BSDCan 2014 p. 27

Ingo Schwarze: Let's makmanuals more useful!- 39 - EuroBSDCon 2014, September 26, Sofia

7.5 Statusin non-BSD systems

illumos
Mandoc is contained in the base system and used by default for formatting manuals since July 21, 2014
(Garrett D’Amore). Upgraded to 1.12.3 on August 2, 2014 (Garrett D’Amore).

Minix 3
The mandoc source code is in the base repository since June 26, 2010 (B&hH&nas)er, the project
appears to be somewhat apathetic. It is still using a version that is more than four years old.

Alpine Linux
An aport exists since July 6, 2010 (Natanael Copa). \techfrom testing to main on June 12, 2011 (Natanael
Copa). Itis continuously maintained.

Arch Linux
An mdocml package exists since October 3, 2010 (Markus M. May). It was updated to 1.12.3 on April 17,
2014 (nev maintainer Jesse Adams) and to 1.13.1 on August 17, 2014 (Jesse Adams).

Slackware Linux
An mdocml package exists since January 7, 2014 (Daniel Lévai).

CentOS, Debian, Fedora, RedHat, SUSE, Ubuntu Linux
Unofficial mdocml packages exists since April 19, 2014 (Jesse Adams).

MacOS X
An mdocml package exists since September 5, 2010, but it seems abandoned.

Cygwin
An mdocml package exists since December 12, 2012 ¢YaB#tkowitz). It was ypdated to 1.12.2 on
November 11, 2013 (Yaaw Selkowitz).

80. BSDCan 2014 p. 28

Ingo Schwarze: Let's makmanuals more useful!- 40 - EuroBSDCon 2014, September 26, Sofia

8. Exercises
The following pages propose somereises for the hands-on working phases of the tutorial.
Before starting to work, consider the following points:

1. Theamount of gercises proposed is intentionallyuchbigger than what anybody can possibly handle in the
40 minutes waailable for working on them in this tutorial, such that youéhachoice both with respect of
topic area and difficulty.

2. Donot waste time studying all the instructions of all tker@ses. Lookat the table of contents for topic
areas you are interested in, then skim the instruction textemw@ises for that area. Only study those
instructions in detail you actually consider working on.

3. Feelfree to work alone or with one or évpartners at your choice.

4. Feelfree to ask anquestions you might ka o me or ay aher participant during the working phases. Do
not fear interrupting people. Everybody can work in a concentrated manner for hours on end at home. What
you can hae here and whas' harder to get at home ¢®operation

5. Inthe first, longer (30 minutes) phase, feel free to spend all the time on onexctaskler explore seral -
probably not more than three - smaller tasks. In the second, shorter (10 minutes) phase, you should probably
focus on one task, or at mostwTry to avoid time-consuming repetite work during the tutorial For
example, instead of writing down a long of list options, just write down the ficsbtvhree, then mee m to
the next section.

6. If, during your work, you disea@r anything you consider worth presenting to the other participants of the
tutorial, talk to me during the working phase, and i may be able to essdot of one to three minutes for
you. Nobodwwill be forced to present their results, though.

8.0 Recommendedxercises

The following eercises are recommended for the following target audiences. Of course, all participants are free to
choose ayexercise thg are interested in. See the table of contents at the very end of this document.

The eercises marked "second phase" are easier to handle in the second working phase because the subject will only
be explainedfterthe first working phase. If you baa $rong interest in somexercise marked "second phase" and
feel able to handle it, there is nothing wrong with attempting it in the (longer) first working phase, though.

Software or documentation vi#opers...

.. working on software lacking one or more manual pages:
first phase: Exercise 8.1.1, page 41.

.. working on software having non-mdoc documentation:
first phase: Exercise 8.1.2, page 41.

.. working on software having mdoc documentation:
first phase: Exercise 8.3.1, page 42.

.. maintaining a portable software package:
first phase: Exercise 8.2.1, page 42. Exercise 8.2.2, page 42.

Porters and port maintainers:
first phase: Exercise 8.3.1, page 42. Exercise 8.3.2, page 43.
second phase: Exercise 8.4.1, page 43. Exercise 8.4.2, page 43.

Operating system #elopers and documentation maintainers:
first phase: Exercise 8.3.2, page 43.
second phase: Exercise 8.4.1, page 43. Exercise 8.4.2, page 43.

Ingo Schwarze: Let's makmanuals more useful!- 41 - EuroBSDCon 2014, September 26, Sofia

System administrators:

second phase: Exercise 8.4.2, page 43.

End users:

second phase: Exercise 8.4.1, page 43.

8.1 Usingthe mdoc(7) formatting language

8.1.1 Writinga manual from scratch

If there is a software, ideally not too complad with a limited number of features, that you maintain or just care
about and that doegriaveary manual page yet, start writing a manual page for it using the mdoc(7) language.

Hints:

Be careful to not get lost in details.
Start by setting up the preamble atldrequired section titles.

In each section, takmough notes which material will need to bevaed in that section. Only after that, start
filling in individual sections.

Pay particular attention to get the beginning of the DESCRIPTION concise and tigaould clearly state
the purpose of the software and not be wordy.

When drafting lists, first figure out which list entries will be needed, only then start filling them in.

If there is more material to eer than you can finish during the tutorial, dof@ar leaving blanks in the
middle. Ty to work on as mandifferent parts as possible and ¢sklvantage of the chance to ask questions
that arise.

Consider submitting the result to the software maintainer for inclusion, possibly after finishing it at home if
time is insufficient during the tutorial.

8.1.2 Tanslating a manual to mdoc

If there is a software, ideally not too complad with a limited number of features, that you maintain or just care
about and that has a manual in a language different from mdoc(7), start translating the manual to Wddagg).
on this eercise is particularly useful if you kia reason to beliee that the maintainer might be willing to switch the
format.

Hints:

Be sure to keep a cypf the original.

If there is more material to eer than you can finish during the tutorial, dof@ar leaving blanks in the
middle. Ty to work on as mandifferent parts as possible and ¢sklvantage of the chance to ask questions
that arise.

If the original was a man(7) page, compare the output of mandoc(1) from your version with the output
mandoc —Omdocproduces from the original version.

Consider submitting the result to the software maintainer for inclusion, possibly after finishing it at home if
time is insufficient during the tutorial.

Ingo Schwarze: Let's makmanuals more useful!- 42 - EuroBSDCon 2014, September 26, Sofia

8.2 Manual pages for portable software
8.2.1 Rckage aitogenerated man and cat

Take a prtable software package you maintain or care about that already has mdoc(7) manuals or where you
consider coverting the manuals to mdoc(7). Design and implement make(1) targets in the distribution tarball build
system to generate and package man(7) and cat (preformatted) versions of the existing mdoc(7) manuals.

Caveat:

The difficulty of this e&ercise, and the amount of work required, can vary greatly depending on the size and
complexity of the software package and the build system U=&d large or compbe package, familiarity with the
build system is probably required.

Hints:

« You must hae a tiecked out copof the source repositaryThis exercise cannot be solved starting from a
mere release tarball.

- If the mdoc(7) versions of the pagev&aot yet been written, dofivaste your time on that, just write dvar
three ten-line stubs to get started.

- Pay attention to not edit autogenerated files, Kakefileif there is alsdMakefile.in

« Try to use make(1) inference (suffix) transformation rul@goid writing one rule for each manual page if
possible.

- To test your changes, build and inspect a release tarball.
8.2.2 Writeconfiguration tests

Take a prtable software package you maintain or care about that already has mdoc(7) manuals or where you
consider coverting the manuals to mdoc(7). Design and implement configuration tests to decide whether to install
mdoc, man, or cat manuals on the target system.

Caveat:

The difficulty of this e&ercise, and the amount of work required, can vary greatly depending on which build system
is used and hwit is used. You better hee a &least a rough idea what you are doing and some experience with the
build system in question, or at least with build systems in general, before attemptingtisee

Hints:

- If possible, check out a cppf the source repository of the software to work in. Depending on the build
system used, merely having a release tarball may or may not be sufficient to do meaningful work on this
exgcise.

« Pay attention to not edit autogenerated files, likanfigurein software using GNU autoconf(1).

- An easy test of your changes can probably be done in the checkout area by running the tool to regenerate
autogenerated files, then running the configuration script and inspect what it detects.

- The ultimate test would be to build a release tarball, than test from that.

8.3 Quality control for existing manuals
8.3.1 Cheking one or a f& specific payes

Choose a small number of manual pages you maintain or care about. Run those check tools — matidbgc(1)
mdoclint(1), igor(1), and maybe gmff- you hare installed or can easily install on them. Prioritize your findings
and tale notes about those you consider veld. If desired, prepare patches to immrdhe manuals.

Ask somebody who is experienced with mdoc(7) teehebok at your patches, then send them upstream for
inclusion.

Ingo Schwarze: Let's makmanuals more useful!- 43 - EuroBSDCon 2014, September 26, Sofia

8.3.2 Runningpulk quality checks

In a larger tree of manuals you maintain or care aboutnamdoc -Tlint —Wfatal, solve any issues showing up,
runmandoc —Tlint —~Werror , and start working on the issues found.

Hints:

- Don't be dy to use find(1) or scripting as required to quickly and efficiently get at the files you need. On the
other hand, domwaste your time devising elaborate framoeks right now; this tutorial is about manuals, not
about build systems!

- Refrain from large-scale patching until you are really sure what you see are large-scale errors in your tree and
cannot reasonably be solved in other ways, for example by improving mandea()is eercise,
communication is of particular importance, tharepeople around you can talk to!

- If you arrive in a gate where the are no more errors, you can proceed to look at warnings.

8.4 Seaching and displaying manual pages
8.4.1 Bsting ma&whatis and apropos

Choose a manual tree you are maintaining or care about. Rawhels(8) on it. Try out various apropos(1)
features and try to diseer issues. Reposgry you find to me.

Hints:

« For this eercise, having an up-to-date mandoc suite is more important than for most. Consider checking out
from anoncvs@mdocml.bsd.lv:/cvs and building and installing from that before starting. On OpenBSD, it is
better to build fromusr/src/usr.bin/mandoinstead.

- To run malewhatis(8) on one specific tree onypu will need thadir argument.

- If everythings appears to be working fine, try to refine your methBdsexample, try the-p, =D, and—-DD
options of makwhatis(8) and try to understand the output.

 Probably most of the output will be false posigs, but you may also find some real bugs in the manuals in
this way that can be worth patching.

- If you are comfortable with SQL, run the sqlite3(1) command line client directly on the database generated by
makewhatis(8) and look for anything that seems questionable.

8.4.2 Cheking manual locations and formats

On your Bvaurite operating system, figure out all locations where manuals are installed and identify those that
man(1l) searches by @eflt. Figureout all formats of installed manual pages (formatted/unformatted, source
language, compression, wheats. Checkthat malewhatis(8) and apropos(1) work for all locations and all formats.
Report ag issues you find to me.

Hints:

« For this eercise, having an up-to-date mandoc suite is more important than for most. Consider checking out
from anoncvs@mdocml.bsd.lv:/cvs and building and installing from that before starting. On OpenBSD, it is
better to build fromusr/src/usr.bin/mandoinstead.

CONTENTS

0. Introduction, Motiation, @Nd NISTOMYcciiiii i e e e e e e e e e e e e e e eaebeeeees 2
0.1 Quality of software and dOCUMENTALION..........ciiiiiiiiiiii ittt e e e e e e s 2
0.2 Manuals from the USBITRISPECHE oooiiiiiie e 3
0.3 Manuals from the authGIPRISPECIIE coiiiiiii e e 4
0.4 Origins of the roff(7) [anQUAgE SYNTAX..........oiiuuiiiiiiiii e e e e e 4
0.5 Advantages of the MaMACrO SYNTAXcoouuiiiiiiiiii e 5
0.6 Origin of the basic ManuUal STIUCLUIE..............uuiiiiiii e 5
0.7 Origin of semantic Markup iN MANUAISueiiiiiiii e 6
0.8 Classic documentation formats (SUMMAIY).......coeeiiiiiiuriiieiieeea ettt e e e e e e e e e abebeeeeeeea s 6
0.9 Advantages Of MANAOC..........oiii i e e e e e e e e e s e e s abe b eareeeaaaaaeeaan 6

1. Using the mdoc(7) formatting lanQUAGE...........ouuuiiiiiiiie et 7
1.1 Getting started With MAOC..........ooiiiiie et a e e e e e e 7
1.2 RESOUICES ...ttt ittt ettt e e e e e s e et e et e e e e e e s e e e ettt e e e e e e s e e bbb e e ettt e e e e e e n e s e e 8
R B = (o Tox 2 =21 Vo TSP PEPPTRPTN 9
1.4 Badly NESLEA DIOCKSoeiiiiiiiii ettt e e e e e e e e e e e e e e e e aanes 10

2. Manual pages for portable SOftWAIE.oii e 12
2.1 ChOOSING the TANQUAGE....c.ci e ettt e ettt e e e e e e e e e e e anbb e b e e e e e aaaeeeaeana 12
2.2 Case study: the sudo(8) MANUALS............eiiiiiiiiiii e e 12
2.3 Implementation of the MdOC t0 MAN CEIMET oiiiiiiiiieeee e 12

3. Quality control for exXiSting MANUAIS..........ooouiiiiiiiiie et e e e e as 14
3.1 Why itis critical to get errors and warnings rght..........c..ueeeiiiiiiiii e 14
3.2 Goals of quality control for MANUALS..............eeiiiiiiiii e 14
3.3 Checking With MandOC -THNToeiiiii et e e e e e e e e e e snanees 15
3.4 Checking With MAOCHNToeieii e e 17
3.5 ChecKing WIth IQOF ...ccooi ettt e e e e e e e e e e e e e e e e s e nnnbeseeees 17
3.6 Groff-mandOC COMPAIISONS.......uuiiiiiiieiiii ittt e et e e e e e e e e s e e s bbb e et e e e e e e e e e e s e annnbeeneees 17
3.7 Consistencchecking with maBWhatiS ... 18

4. Searching and displaying ManUal PAJES.uueeiiiiii i ae e e e e s 19
4.1 Backward coOmpPatiDilityeeeeiiiiiii e 19
4.2 Markup-Sensiie SBAIrCHeee e 19
4.3 Markup-sensitie arch fEatUreScooo i e 20
4.4 COMPIE SLAICN QUETIES ...ttt e e ettt e e e e e e e e s s bbbt e et e e e e e e e e e e s aannnbeenees 20
4.5 Flexible QULPUL FOIMALooiii e e e e e e e e s beeeeeaaa s 21
4.6 Unified user interface inCluding Man(L).......ccoooiiiiiiiiiiiiiie e 21
4.7 Web interface for manual search and diSplay...........cooooiiiiiiiiiii e 23
4.8 Database iMpPlemMENTALION.ooiii et e e e e e e e e e e e e e e e e e as 24
4.9 SearCh @lgOIItNIM ettt e e ettt e et e e e e e e e e e e annb bbb e eeeeaaaeeeeeaannnes 24
o L @ o] 1107174 11 (o] o H TP PPURTRPN 24

5. Integrating mandoc as a base system documentation formatter............ccccovoveeeeriiiieeenniieeee s 27
N N o (=T o = = 11 [[PPSO PPUPRRPT 27
5.2 1dentify fAt@l ISSUEScooiieieie ettt e e e e e e e e e e e e e e e e e e s anb e e e 28
5.3 Investigate NON-TAt@l @ITOFS ...t e e e e e e e e e e e e e e e aaaes 29

5.3.1 Supporting the pod2man(l) Preample......... . 29

5.3.2 The mandoc(1) tbl(7) IMPIeMENTAtION............coiiiiiiiiiiiii e 30

5.3.3 The design of mandoc(1) beyond MAOC(Z)........ccouiiiiummiiiiieiiaeae e 30
O o T=Tod (g g F= T [o (ool 1U 11 01U | A PR TP TR UOURPP 32

5.5 WatCh OUL Or [OCAI TEAIUIES! ... e et e e et e e et e e e et e s e aa e e e aaaas 32

5.6 Switch @er to build With MANAOCcocviiiiiie e 33
5.7 Lessons learnt from the replacement ProjECL..... ... 34
. Integrating mandoc as a ports documentation fOrmatter.............oooiiiiiiiiiiiiiii e 35
6.1 Handling manual PAgES IN POIS.....cciiiiiiiiiie ittt e e e e e e e e e e e s aannbbeeeees 35
6.2 The OpenBSD solution for manual Pages iN POLLS..........eeiiiiiiaiiiiiiiiiieeee e 35
6.3 Features that help, in particular fOr POILS...........ueeiiiiiii e 35
6.4 MaleWhatiS(8) IN POMS ...eeiiiiiiiiiii ittt e e e e e e e e s bbb et e e e e e e e e e e s e e nnbbebaeeeaaaaeeeaeaanns 36
6.5 MOVING Grof tO POIS .ottt e et e e e e e e e e bbb e e e e e e e e e e e e e nnbnreeeeeeas 36
6.6 Summary: step by StEP INSIIUCTIONSeiiiiiieiii e a e 37
o STALUS NGO NEXE STOPS et etitieeei i ittt e e et ettt e et e e e e e et e s s ababbe et e e e eaaaaaesaaansbbbeeeeeeeaaaaeesaaannsrneeees 38
7.1 OPENBSD ..ottt b e r e st e e e e e e nrreas 38
A (=11 =151 5 ST PP PP PPPPPPPPP 39
7.3 FIEEBSD ...ttt e e e e e e e ar e e e e 39
T4 DragOnFly BSD ...ttt e e e e e e e e e e e e e s bbb e e teaeaaaaaeeaaaane 39
7.5 Status iN NON-BSD SYSIEMIS. ... ueiiiiiiiiiieiee e e ettt et e e e e e e e s e b et e e e e e e e e e e s s sbnbasaeeeeaaaeaaeaaanns 40
c EXBICISES e e e e e e s b e e e e s e ee e 41
8.0 RECOMMENUEMKEICISES ...oeiiiiiiieeiitiie ettt e e e e e s st et e e e ek b e e e s e st b e e e e s anbe e e e e ennees 41
8.1 Using the mdoc(7) formatting languUAagE.........cc.uuueiiiiiiiiaii e 42
8.1.1 Writing a manual from SCratCR...........cuoiiiiiiiiiie e 42
8.1.2 Translating @ Manual t0 MOOCcoii it e e e e e e e e e 42
8.2 Manual pages for portable SOftWare...........ooo i 43
8.2.1 Package autogenerated Man and CAL............eeeiiiiaaiiiiiiiiiiiiiieie e e e e 43
8.2.2 Write coNfigUIation TESTS.. ...t e e e e e e s 43
8.3 Quality control for exiSting MAaNUAIS.uuuiiiiiiiiii e 43
8.3.1 Checking one or aleSpecCifiC PAGEScoovii it 43
8.3.2 Running bulk quality CRECKScooiiiiiiiii e 44
8.4 Searching and displaying Manual PAgES.........cc.uuuueiiriiiiaaiiiiee e e e 44
8.4.1 Testing malewhatiS and QPIrOPOSeeiiiiiiiiiiiitiitie e e e e e e as 44
8.4.2 Checking manual locations and fOrmMatsS...........ccooeiiiiiiiiiiiieeee e 44

