

Raceless network configuration

Questions and questions

Vadim Zhukov <zhuk@openbsd.org>

What's the all fuss is about?

● How do you switch to another network?

– by running ifconfig a few times, or running it once with a
couple of command line parameters?

– by putting those calls behind a script/config file?

● Anyway, you're doomed

How it really works

● So you have a network interface. How to manage it?

How it really works

● So you have a network interface. How to manage it?

● ioctl() calls, right. But how much?

How it really works

● So you have a network interface. How to manage it?

● ioctl() calls, right. But how much?

● Lots of them.

The ioctl madness

SIOCS80211NWID
SIOCS80211WEPKEY
SIOCS80211WPAPSK
SIOCS80211POWER
SIOCS80211CHANNEL
SIOCS80211BSSID
SIOCS80211TXPOWER
SIOCS80211WPAPARMS
SIOCS80211FLAGS

● Do you think that's all?

The ioctl madness

● Do you know what happens when you set up your WPA
parameters?

– Enable WPA itself? – SIOCS80211WPAPARMS

– Set allowed WPA version? – SIOCS80211WPAPARMS

– Set allowed ciphers list? – SIOCS80211WPAPARMS

The ioctl madness

● Do you know what happens when you set up your WPA
parameters?

– Enable WPA itself? – SIOCS80211WPAPARMS

– Set allowed WPA version? – SIOCS80211WPAPARMS

– Set allowed ciphers list? – SIOCS80211WPAPARMS

– Set WPA key? – oh, it's different: SIOCS80211WPAPSK

The ioctl madness

● Do you know what happens when you set up your WPA
parameters?

– Enable WPA itself? – SIOCS80211WPAPARMS

– Set allowed WPA version? – SIOCS80211WPAPARMS

– Set allowed ciphers list? – SIOCS80211WPAPARMS

– Set WPA key? – oh, it's different: SIOCS80211WPAPSK

● Yes, all of them do operate on the same structure.

Philosophy question

● A few hours ago you've exited you hotel (or other home)
and went to the conference.

● At some later point in time you arrived here.

● Where were you in between?

– Would you say to someone: “Let's meet in the hotel hall”?

– Would you say to someone: “I'm on the Track C”?

Switching between networks

● So, a couple of ioctl() calls are made, forming many
intermediate states.

● But the packets do still flow!

● Do you really want to send data from old connections via
the new one?

– Note: it won't work anyway as you'll get different address.

What do others do?

● Cisco IOS does a really good job here.

What do others do?

● Cisco IOS does a really good job here.

● But it can't run KDE.

What do others do?

● Recent Windows versions do have netsh.

● But the API it uses is awful.

– Put interface down and up by a simple function call? Are
you kidding?

● But GUI is good.

What do others do?

● Red Hat Linux is usually called enterprise solution.

● If the “enterprise” means “we do the same shit as others,
but you may pay for it”, I'll agree.

● /etc/sysconfig/network-scripts/ifcfg-* do not differ too
much from /etc/hostname.* (or /etc/ifconfig.*, whatever).

● Network Manager does a GUI, though.

What do others do?

● Solaris has a perfect network profiles architecture.

● The 802.11 part isn't that promising, though.

● Can't comment on GUI.

Proposal 1

● Implement some sort of network profiles that will list all
known and trusted (by us) networks.

– In particular, keys/passwords will be kept.

– Absolutely needed by wireless communications.

– Could be used by wired one, too, but will likely need a
help from dhclient(8).

● Should there be more than one profile level?

Profile levels subproposal

1000T
home network

1000T
dayjob network

link-level profile

High-level profile 1

High-level profile 2

Profile levels subproposal

1000T
home network

1000T
dayjob network

link-level profile
(same for all wired)

High-level profile 1

High-level profile 2

Profile levels subproposal

1000T
home network

1000T
dayjob network

link-level profile
(same for all wired)

High-level profile 1

High-level profile 2

Profile levels subproposal

Wi-Fi WPA-PSK
home network

Wi-Fi 802.1x
dayjob network

link-level profile
for 802.1x

High-level profile 1

High-level profile 2

link-level profile
for WPA-PSK

Profile levels subproposal

Wi-Fi WPA-PSK
home network

Wi-Fi 802.1x
dayjob network

link-level profile
for 802.1x

High-level profile 1

High-level profile 2

link-level profile
for WPA-PSK

More than just roaming

● Unknown networks: to trust or not to trust?

– 802.1x case: why not?

– Other cases: the user should know better. But how to ask?

The 802.11 state machine

(comments are removed for readability)

enum ieee80211_state {

 IEEE80211_S_INIT = 0,

 IEEE80211_S_SCAN = 1,

 IEEE80211_S_AUTH = 2,

 IEEE80211_S_ASSOC = 3,

 IEEE80211_S_RUN = 4

};

Proposal 2

● Implement new network interface state, say,
IEEE80211_S_CONFIRM

● No traffic should pass here except association-related.

● It could be good to drop connections routed through the
interface before.

– Even non-if-bound ones? Or do if-bound default?

– What to do with datagram sockets?

Proposal 2

● Implement new network interface state, say,
IEEE80211_S_CONFIRM

● To move on, some application should either:

– get the list of applicable profiles (could be 0, 1 or more);

– get the list of unknown networks (could be 0, 1 or more);

– if desired, set up new network profile, asking user for
network keys;

– call a special ioctl() to resume operation.

Proposal 2

● Implement new network interface state, say,
IEEE80211_S_CONFIRM

● Now the kernel looks at (probably renewed) list of
network profiles and chooses first matching one.

– Should we allow to choose non-first matching one?

– If yes, how? It becomes too complex (read: buggy).

Proposal 2

● Implement new network interface state, say,
IEEE80211_S_CONFIRM

● Wait, this is about 802.11!

Proposal 2

● Implement new network interface state, say,
IEEE80211_S_CONFIRM

● Wait, this is about 802.11!

– Embed the state machine in non-802.11 drivers?
● Some drivers are synced with upstream from time to

time, so it shouldn't add a merge pain…
– Ideas are welcome!

Current state

● Network profiles: iteration #2.5

– Enabled on 802.11 interfaces with special flag set.
● no flag means things behave the traditional way

– Allows to upload and download profiles to/from kernel;

– A userland daemon called autonetd maintains loading
profiles and performs additional actions on profile
activation/deactivation

Sample autonetd.conf

assoc mode lazy
scan period 15
network myhome auth wpa2 " vERy SEcrEt PaSsWOrD!@#$%^&*()"
inet6="config inet6 autoconf"
network "Best Job Ever, Inc." auth 802.1x
 $inet6
 address 192.168.2.78/24
 run on assoc cmd /sbin/route add default 192.168.2.1
 run on deassoc cmd /sbin/route delete default
defaults
 config -inet6
 no dhcp
 run async shell "echo autonetd connected to open network" \
 "\"${NWID}\" on the ${IFNAME} >>/tmp/wifi.log"
network "BestFriend_home" auth wpa 12345678
network "free wi-fi" on iwm0 open
 $inet6
 dhcp
network "MosMetro_Free" open
 inherit defaults
 captive mosmetro

Current state

● Network profiles: iteration #2.5

– Enabled on 802.11 interfaces with special flag set.
● no flag means things behave the traditional way

– Allows to upload and download profiles to/from kernel;

– A userland daemon called autonetd maintains loading
profiles and performs additional actions on profile
activation/deactivation

– Will likely bite the dust as well as previous iterations.

Current state

● In theory, profiles could/should be loaded by utility we
already have in base:

– ifconfig

● But there is no consensus on syntax yet

– and should it be always the whole bunch, or one-by-one?

What's next?

● Discuss the concerns with more people.

– Everybody here is invited!

● Start implementing the IEEE80211_S_CONFIRM state.

– When it's polished inside sys/net80211, we could start
moving outside of it.

Credits and thanks

● Stefan Sperling

● Theo de Raadt

● Mark Kettenis

● Jonathan Gray

● Stuart Henderson

● and all other people who
reviewed, tested and
willing to help further.

Credits and thanks

● Stefan Sperling

● Theo de Raadt

● Mark Kettenis

● Jonathan Gray

● Stuart Henderson

● and all other people who
reviewed, tested and
willing to help further.

● EuroBSDCon organizers

– especially Jahne
Johansson for his
incredible patience

● Sweden

– for nice weather, people,
trains and jam

Credits and thanks

● Stefan Sperling

● Theo de Raadt

● Mark Kettenis

● Jonathan Gray

● Stuart Henderson

● and all other people who
reviewed, tested and
willing to help further.

● EuroBSDCon organizers

– especially Jahne
Johansson for his
incredible patience

● Sweden

– for nice weather, people,
trains and jam

● Flying Pasta Monster

– just to be on a safe side

Questions?

Final credits

● Thank you all for allowing me to steal almost an hour of
time from each of you. :)

– This should give me a few days of life in total!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

