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What's the all fuss is about?

● How do you switch to another network?

– by running ifconfig a few times, or running it once with a 
couple of command line parameters?

– by putting those calls behind a script/config file?

● Anyway, you're doomed



  

How it really works

● So you have a network interface. How to manage it?
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How it really works

● So you have a network interface. How to manage it?

● ioctl() calls, right. But how much?

● Lots of them.



  

The ioctl madness

SIOCS80211NWID
SIOCS80211WEPKEY
SIOCS80211WPAPSK
SIOCS80211POWER
SIOCS80211CHANNEL
SIOCS80211BSSID
SIOCS80211TXPOWER
SIOCS80211WPAPARMS
SIOCS80211FLAGS

● Do you think that's all?



  

The ioctl madness

● Do you know what happens when you set up your WPA 
parameters?

– Enable WPA itself? – SIOCS80211WPAPARMS

– Set allowed WPA version? – SIOCS80211WPAPARMS

– Set allowed ciphers list? – SIOCS80211WPAPARMS
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The ioctl madness

● Do you know what happens when you set up your WPA 
parameters?

– Enable WPA itself? – SIOCS80211WPAPARMS

– Set allowed WPA version? – SIOCS80211WPAPARMS

– Set allowed ciphers list? – SIOCS80211WPAPARMS

– Set WPA key? – oh, it's different: SIOCS80211WPAPSK

● Yes, all of them do operate on the same structure.



  

Philosophy question

● A few hours ago you've exited you hotel (or other home) 
and went to the conference.

● At some later point in time you arrived here.

● Where were you in between?

– Would you say to someone: “Let's meet in the hotel hall”?

– Would you say to someone: “I'm on the Track C”?



  

Switching between networks

● So, a couple of ioctl() calls are made, forming many 
intermediate states.

● But the packets do still flow!

● Do you really want to send data from old connections via 
the new one?

– Note: it won't work anyway as you'll get different address.



  

What do others do?

● Cisco IOS does a really good job here.



  

What do others do?

● Cisco IOS does a really good job here.

● But it can't run KDE.



  

What do others do?

● Recent Windows versions do have netsh.

● But the API it uses is awful.

– Put interface down and up by a simple function call? Are 
you kidding?

● But GUI is good.



  

What do others do?

● Red Hat Linux is usually called enterprise solution.

● If the “enterprise” means “we do the same shit as others, 
but you may pay for it”, I'll agree.

● /etc/sysconfig/network-scripts/ifcfg-* do not differ too 
much from /etc/hostname.* (or /etc/ifconfig.*, whatever).

● Network Manager does a GUI, though.



  

What do others do?

● Solaris has a perfect network profiles architecture.

● The 802.11 part isn't that promising, though.

● Can't comment on GUI.



  

Proposal 1

● Implement some sort of network profiles that will list all 
known and trusted (by us) networks.

– In particular, keys/passwords will be kept.

– Absolutely needed by wireless communications.

– Could be used by wired one, too, but will likely need a 
help from dhclient(8).

● Should there be more than one profile level?



  

Profile levels subproposal
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Profile levels subproposal
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Profile levels subproposal

Wi-Fi WPA-PSK
home network

Wi-Fi 802.1x
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link-level profile
for 802.1x

High-level profile 1

High-level profile 2

link-level profile
for WPA-PSK



  

More than just roaming

● Unknown networks: to trust or not to trust?

– 802.1x case: why not?

– Other cases: the user should know better. But how to ask?



  

The 802.11 state machine

(comments are removed for readability)

enum ieee80211_state {

        IEEE80211_S_INIT        = 0,

        IEEE80211_S_SCAN        = 1,

        IEEE80211_S_AUTH        = 2,

        IEEE80211_S_ASSOC       = 3,

        IEEE80211_S_RUN         = 4

};



  

Proposal 2

● Implement new network interface state, say, 
IEEE80211_S_CONFIRM

● No traffic should pass here except association-related.

● It could be good to drop connections routed through the 
interface before.

– Even non-if-bound ones? Or do if-bound default?

– What to do with datagram sockets?



  

Proposal 2

● Implement new network interface state, say, 
IEEE80211_S_CONFIRM

● To move on, some application should either:

– get the list of applicable profiles (could be 0, 1 or more);

– get the list of unknown networks (could be 0, 1 or more);

– if desired, set up new network profile, asking user for 
network keys;

– call a special ioctl() to resume operation.



  

Proposal 2

● Implement new network interface state, say, 
IEEE80211_S_CONFIRM

● Now the kernel looks at (probably renewed) list of 
network profiles and chooses first matching one.

– Should we allow to choose non-first matching one?

– If yes, how? It becomes too complex (read: buggy).



  

Proposal 2

● Implement new network interface state, say, 
IEEE80211_S_CONFIRM

● Wait, this is about 802.11!



  

Proposal 2

● Implement new network interface state, say, 
IEEE80211_S_CONFIRM

● Wait, this is about 802.11!

– Embed the state machine in non-802.11 drivers?
● Some drivers are synced with upstream from time to 

time, so it shouldn't add a merge pain…
– Ideas are welcome!



  

Current state

● Network profiles: iteration #2.5

– Enabled on 802.11 interfaces with special flag set.
● no flag means things behave the traditional way

– Allows to upload and download profiles to/from kernel;

– A userland daemon called autonetd maintains loading 
profiles and performs additional actions on profile 
activation/deactivation



  

Sample autonetd.conf

assoc mode lazy
scan period 15
network myhome auth wpa2 " vERy SEcrEt PaSsWOrD!@#$%^&*()"
inet6="config inet6 autoconf"
network "Best Job Ever, Inc." auth 802.1x
        $inet6
        address 192.168.2.78/24
        run on assoc cmd   /sbin/route add default 192.168.2.1
        run on deassoc cmd /sbin/route delete default
defaults
        config -inet6
        no dhcp
        run async shell "echo autonetd connected to open network" \
                  "\"${NWID}\" on the ${IFNAME} >>/tmp/wifi.log"
network "BestFriend_home" auth wpa 12345678
network "free wi-fi" on iwm0 open
        $inet6
        dhcp
network "MosMetro_Free" open
        inherit defaults
        captive mosmetro



  

Current state

● Network profiles: iteration #2.5

– Enabled on 802.11 interfaces with special flag set.
● no flag means things behave the traditional way

– Allows to upload and download profiles to/from kernel;

– A userland daemon called autonetd maintains loading 
profiles and performs additional actions on profile 
activation/deactivation

– Will likely bite the dust as well as previous iterations.



  

Current state

● In theory, profiles could/should be loaded by utility we 
already have in base:

– ifconfig

● But there is no consensus on syntax yet

– and should it be always the whole bunch, or one-by-one?



  

What's next?

● Discuss the concerns with more people.

– Everybody here is invited!

● Start implementing the IEEE80211_S_CONFIRM state.

– When it's polished inside sys/net80211, we could start 
moving outside of it.
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Credits and thanks

● Stefan Sperling

● Theo de Raadt

● Mark Kettenis

● Jonathan Gray

● Stuart Henderson

● and all other people who 
reviewed, tested and 
willing to help further.

● EuroBSDCon organizers

– especially Jahne 
Johansson for his 
incredible patience

● Sweden

– for nice weather, people, 
trains and jam

● Flying Pasta Monster

– just to be on a safe side 



  

Questions?



  

Final credits

● Thank you all for allowing me to steal almost an hour of 
time from each of you. :)

– This should give me a few days of life in total!
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