
Pledge: where did it come from?

Was pledge invented in a light happy dream?

             We stood beneath an amber moon
            Where hearts were entertaining June
            And softly whispered "someday soon"
            We kissed and clung together
            …

No, it is the outcome of nightmares.

„

“



My nightmares

● When Good Instructions go Bad: Generalizing return-
oriented programming to RISC

– Buckanan, Roemer, Shacham, Savage. 2008.

● Hacking Blind (BROP)

– Bittau, Belay, Mashtizadeh, Mazières, Boneh. 2014.



ROP – Return Oriented Programming

Hijack control-flow with false return frames, running 
gadgets, combining artifacts effects

Gadget is any sequence of register/memory transfer above a 
true ret (or polymorphic ret) instruction

Attacker needs to know where gadgets are, and address of 
the new-stack

Also JOP, SROP, etc.



BROP – Blind ROP

An address-space oracle

Repeated probes against reused address-space learns 
enough to perform minimum ROP operations

Then uses various ROP methods.



(Large) software will never be perfect

Erroneous condition logic fails, then cascades through 
successive failures, often externally controllable

Results in illegal access/control of the program & libraries,  
or toying with kernel surface

Attacker tools and knowledge are improving, faster than 
developers can cope



I work on mitigations

Mitigations are inexpensive tweaks which impact attack 
methods – trying to diminishing their effectiveness

Some mitigations expose use of un-standardized behaviours 

Defect detected  ―>  Fail Closed

Pressure towards robustness in software.



Robust (adj.)

When used to describe software or computer systems, 
robust can describe one or more of several qualities:
– a system that does not break down easily or is not 

wholly affected by a single application failure
– a system that either recovers quickly from or holds 

up well under exceptional circumstances
– a system that is not wholly affected by a bug in one 

aspect of it

„

“
On the way to the lush valley of robust, we must first 
cross the wilderness of fail-closed. We haven‘t finished 
that journey yet.



How to measure a good mitigation?

● Diminishes effectiveness of specific attack method

● Efficient, low overhead

● Easy to understand

● Easy to incorporate into old & new code

● One mitigation need not fix ALL the problems – let‘s hope 
they cooperate like aspirin + hot toddy 

● Rise of a cult of followers & adopters also                               
counts as a measure of success



Components attackers use

Knowledge +

Substantial consistancy

Location of objects 
(relative and absolute)

Gadgets, constants, 
pointers, regvalues, etc.

Mechanism +

Code Reuse

Syscalls

Objects

Filesystem

open fd‘s

 



17 years of mitigation work

ASLR

W^X

StackProtector
  per-DSO StackProtectorRETGUARD..

...RETGUARD4

fork+exec (never reuse an address space)

pledge()

stackghost

Kernel W^X

privsep

privdrop

Library-relinking

KARL
     random KERNBASE

sshd relinking?

X-only kernel?

X-only .text? kbind(2)

.openbsd.randomdata

These changes cause "weirdʺ or un-standardized operations 
to fail-closed (crash now)

otto-malloc()atexit()-hardening

pledgepath()

sendsyslog()

PIE

setjmp() cookiessigreturn() SROP cookie RELRO

trapsleds

Lots of arc4random

cc deadreg-clearing

poly-ret scrubbing

guard pages

Rev memcpy() detectsyscall sp check



Heretic!  BSD was already perfect!

● The rules of engagement changed.

● Security concerns were not on the radar 30 years ago.

● Ignoring problems doesn‘t make them go away

This is research:

Discover & design new improvements, use base+ports to 
validate effective patterns



Earlier mitigations often need uplift

Example: ASLR

1. Randomize DSO bases… 2001

2. Randomize DSO order… 2003

3. Guard zones between.. 2005

4. Guard bottom of stack… 2017

5. Randomize internal objects.. 2017

...



Mitigation Strategies

● Reduce externally-discoverable knowledge

● Improve historical weaknesses of permission models

● Disrupt non-standard control-flow methods

● Educate increasing use of fork+exec privsep

But not enough:  if control is grabbed, syscalls get used to 
act upon resources.



Components attackers use

Knowledge +

Substantial consistancy

Location of objects 
(relative and absolute)

Gadgets, constants, 
pointers, regvalues, etc.

Mechanism +

Code Reuse

Syscalls

Objects

Filesystem

open fd‘s

Largely migitated... or works ahead

Remaining areas
of concern



Where mitigations apply

Stackoflow  ROP BROP

 privsep fork+exec

SSP W^X privdrop pledge

hand-audit ASLR RETGUARD4

 Per-DSO SSP per-DSO relink

Stackghost                                    X-only .text
                                                      poly-ret scrub?



Privsep + pledge 

Stackoflow  ROP BROP

 privsep fork+exec

SSP W^X privdrop pledge

hand-audit ASLR RETGUARD4?

 Per-DSO SSP per-DSO relink

Stackghost                                    X-only .text
                            poly-ret scrub?



Privilege Separation

Many OpenBSD programs were rewritten to follow a design 
pattern called Privilege Seperation – Work domains are 
split into seperate processes.

Seperate security domains, in theory...

NETWORK
SPEAKER

CRAP STRING
HANDLING

fork+exec

pipe

socket



Pledges are POSIX subsets

Each pledge request allows a (carefully selected) subset of 
POSIX functionality

Subsets such as:  stdio rpath wpath cpath fattr inet dns 
getpw proc exec …

Deep functional support in the kernel; much more than 
¨seccomp¨ macros



wpath
sendfd

rpath
cpath

Pledges are POSIX subsets

recvfd

stdio

No subtle behaviour 
changes

No error returns

Fails-closed

Illegal operations 
crash

Easy to learn



Privilege Separation + Pledge

Pledge ENFORCES the security-specialization of each 
process 

NETWORK
SPEAKER

CRAP STRING
HANDLING

pledge(″stdio″)pledge(″stdio inet″)

That wasn‘t so hard.  Any questions?



How does pledge help privsep?

2nd specification of a program‘s behaviour and 
requirements is embedded directly into the program.

No behaviour changes, only detection of rule violation

Consider:                     #define pledge(x,y) 0



Shell-friendly

● Many programs are nominal ″shells″ -- spawn commands

● Ignoring this requirement leaves them unprotectable

● proc and exec, permit fork/execve related operations

● execve() turns off pledge features -- anticipates new image 
will enable pledges it needs

● If you don‘t use exec, it cannot bite you

● OpenBSD sh cannot open sockets. capsicum has no 
solution for this problem.



Hoisting – Handling Disappointment

● On occasion, pledge rules are extensive — exposing 
breadth of system call use by program

● Hoisting is the process of identifying initialization code 
which gets run late, and moving it early

● Refactoring results in programs with tighter pledge

● Depends on zeal of the developer...



pledgepath() — WIP

● Filesystem containment mechanism in development

● Pre-register required ffilepaths, dirpaths

– vnode references grabbed, and rediscovered later by 
namei

● Like chroot in reverse?

● Decision between various TOCTOU scenarios – selecting a 
fail-closed behaviour of course



Use of pledge in a program is always less complicated than 
the program itself!

Cannot pledge firefox due
– lack of inherent privsep
– fails to isolate syscall reach into different modules
– so everything must be allowed

chrome was strongly pledged in <1 week
– Google wrote it privsep from the start

Developers, developers, developers!



Thank you to all who support OpenBSD work through 
contributions to the OpenBSD Foundation

Remember – Pledge early, pledge often!

OpenBSD Foundation


