Architectures vs the Ports tree: a losing battle 7

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr>

OpenBSD project & Laboratoire de Recherche de I'Epita

September 18, 2022

LABORATOIRE DE RECHERCHE DE L'EPITA
EQUIBE SECURITE/sySTEME

"

OpenBSD rules

WELCOME 10
THEO"S ROUGHNECKS

Only on OpenBSD

@ we only use cross-compilation
for bootstrap

1 HAVE ONLY 1 RULE:

@ every arch builds its own

EVERYONE BUILDS, - packages
NO-ONE QUITS / @ best stress-test ever)

Interesting variations

strict alignment architectures

big endian vs little endian

character signedness (not really interesting)
reverse stack

ghostguard

smallkva

(compiler bugs)

Why this talk

e Cumulative work over the past 20 years or so
@ Lots of (smallish) topics | haven't talked about ever

@ No big plan, just lots of small improvements and know-how

What's an architecture

What's in a name

@ ARCH describes the exact machine (e.g., macppc)
@ MACHINE_ARCH is the "cpu make" (e.g., powerpc)
@ details like "i386" vs "pentium" are generally not encoded

e — generally, packages target MACHINE_ARCH

Compiler subversion

Compilers offer -march=native options

This should never be used for building packages

Instead the base OS targets a baseline cpu, and everything should work on this cpu
and later versions

(notable exception: the altivec extensions to ppc, a while ago)

slowly, the bar gets raised, from i386 to i586 to...

not gentoo

talking to upstream
@ explaining that we're software vendors, and we need reliable builds that will work
on every machine
@ so no tests during builds to optimize the compilation to the exact machine we have
@ specifically for multimedia software: no hand-crafted assembly code selected at
runtime

good practices
@ provide at least a way to build that doesn't hardcode machine details

@ replace compile-time tests with runtime tests to select hand-crafted code (for
instance, relying on cpuid on intel boxess)

uuuuu

compilers

Compiler options

in general, upstream is bad with compiler options
those do break on some arches

so we standardize on -02 and -02 -g

porters try to help heeding CFLAGS and CXXFLAGS

we hate build systems without an easy way to specify options

even compilers change options with hilarious effects

Variation on available stuff

@ coding tests on MACHINE_ARCH is an extraordinarily bad idea
o prefer ONLY_FOR_ARCHS and NOT_FOR_ARCHS
o (or eventually BROKEN)

@ that way everything is referenced properly

tools

gets information through make dump-vars
should be resilient to errors
will flag as errors missing information for ports

removes stuff if marked as not available for this arch

can even be run on a different architecture for listing

€

@ we also run make dump-vars to create a db of everything

@ that one errors out if something does not work, possibly a pkgpath

example |

===> archivers

[

===> archivers/arc
archivers/arc.IS_INTERACTIVE=No
archivers/arc.SUBPACKAGE=-
archivers/arc.BUILD_PACKAGES= -
archivers/arc.MULTI_PACKAGES=-
archivers/arc.DISTFILES=arc-5.21p.tar.gz
archivers/arc.MASTER_SITES=https://downloads.sourceforge.net/sourceforge/arc/
archivers/arc.CHECKSUM_FILE=/usr/ports/archivers/arc/distinfo
archivers/arc.FETCH_MANUALLY=No

11 archivers/arc.PERMIT_DISTFILES=Yes

12 archivers/arc.NO_TEST=Yes

13 archivers/arc.TEST_IS_INTERACTIVE=No

14 archivers/arc.DISTNAME=arc-5.21p

15 archivers/arc.HOMEPAGE=http://arc.sourceforge.net/

16 archivers/arc.MAINTAINER=The OpenBSD ports mailing-list <ports@openbsd.
17 archivers/arc.USE_GMAKE=No

© 0 N O g s W N

=
o

example I

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.
archivers/arc.

USE_GROFF=No
NO_BUILD=No
USE_LIBTOOL=Yes
SEPARATE_BUILD=No
TARGETS= do-install
MAKEFILE_LIST=/usr/share/mk/sys.mk Makefile /usr/share/mk/bsd.port.:
USE_LLD=Yes

USE_WXNEEDED=No

COMPILER=base-clang base-gcc gcc3

COMPILER_LANGS=c c++

COMPILER_LINKS= clang /usr/bin/clang clang++ /usr/bin/clang++ cc |
SUBST_VARS=ARCH BASE_PKGPATH FLAVOR_EXT FULLPKGNAME HOMEPAGE LOCAL
PKGPATHS=archivers/arc

FULLPKGNAME=arc-5.21pp0

PERMIT_PACKAGE=Yes

COMMENT=create & extract files from DOS .ARC files
PKGNAME=arc-5.21p

example Il

archivers/arc.PKGSPEC=arc-*

archivers/arc.PKGSTEM=arc
archivers/arc.PREFIX=/usr/local
archivers/arc.WANTLIB=c
archivers/arc.CATEGORIES=archivers
archivers/arc.DESCR=/usr/ports/archivers/arc/pkg/DESCR
archivers/arc.REVISION=0
archivers/arc.STATIC_PLIST=Yes
archivers/arc.PKG_ARCH=amd64

===> archivers/blosc

35
36
37
38
39
40
41
42
43
44

46
47
48
49

archivers/blosc.
archivers/blosc.
archivers/blosc.
archivers/blosc
archivers/blosc
archivers/blosc

BUILD_DEPENDS=devel/cmake devel/ninja
IS_INTERACTIVE=No
SUBPACKAGE=-

.BUILD_PACKAGES= -
.MULTI_PACKAGES=-
.DISTFILES=c-blosc-1.21.1.tar.gz

13/36

naming game

@ every location in the ports tree has a unique fullpkgpath
e for instance, archivers/arc or lang/python/3.10,-tests
@ there are FLAVORS and MULTI_PACKAGES

Not building

@ variations are often specific parts that do not build on an architecture

@ we can setup a MULTI_PACKAGES port with that part in a separate SUBPACKAGE
@ tests won't work because those subpackages won't be reachable

@ so instead we remove stuff: MULTI_PACKAGES — BUILD_PACKAGES

Example |

1 ONLY_FOR_ARCHS-java = aarch64 amd64 i386

2

3 CATEGORIES = graphics devel

4 COMMENT-main = library for computer vision real-time processing
5 COMMENT-java = Java bindings for OpenCV

6

7 V= 4.6.0

g8 GH_ACCOUNT = opencv

9 GH_PROJECT = opencv

10 GH_TAGNAME = ${v}

11

12 PKGNAME-main = opencv-${V}

13 PKGNAME-java = opencv-java-${V}

14

15 HOMEPAGE = https://www.opencv.org/

16

17 MAINTAINER = Rafael Sadowski <rsadowski@openbsd.org>

16 /36

Example Il

.for i in opencu_calib3d opencu_core opencu_features2d |\
opencu_flann opencu_highguti opencu_imgproc opencu_ml opencu_objdetect |\
opencu_photo opencu_stitching opencu_video opencu_imgcodecs |\
opencv_videoto opencv_dnn

SHARED_LIBS += $i 10.0

.endfor

WANTLIB-main
WANTLIB-main
WANTLIB-main
WANTLIB-main
WANTLIB-main

WANTLIB-java
WANTLIB-java
WANTLIB-java

${COMPILER_LIBCXX} avcodec avformat avutil OpenEXR-3_1

c cairo gdk-3 gdk_pixbuf-2.0 glib-2.0 gobject-2.0 gstapp-1.0
gstbase-1.0 gstaudio-1.0 gstpbutils-1.0 gstreamer-1.0
gstriff-1.0 gstvideo-1.0 gtk-3 jpeg m openjp2 png swscale tiff
webp z

${COMPILER_LIBCXX} opencv_calib3d opencv_core opencv_dnn
opencv_features2d opencv_flann opencv_imgcodecs
opencv_imgproc opencv_ml opencv_objdetect opencv_photo

Example Il

35 WANTLIB-java += opencv_video opencv_videoio

36

37 COMPILER = base-clang ports-gcc
38

39 MULTI_PACKAGES

-main -java

40 PSEUDO_FLAVORS = no_java

41 FLAVOR 7=

42

43 # BSDL

44 PERMIT_PACKAGE = Yes

45

46 MODULES = devel/cmake \

47 lang/python

48

49 BUILD_DEPENDS = math/eigen3 \
50 math/py-numpy${MODPY_FLAVOR}

51

18/36

Example IV

52 RUN_DEPENDS-main = math/py-numpy${MODPY_FLAVOR}
53
54 RUN_DEPENDS-java
55
56 LIB_DEPENDS-main

${MODJAVA_RUN_DEPENDS}

${LIB_DEPENDS} \

57 graphics/ffmpeg \

58 graphics/jpeg \

59 graphics/libwebp \

60 graphics/openexr \

61 graphics/openjp2 \

62 graphics/png \

63 graphics/tiff \

64 multimedia/gstreamerl/core \
65 multimedia/gstreamerl/plugins-base \
66 x11/gtk+3

67

6s LIB_DEPENDS-java = ${BUILD_PKGPATH}, -main=${V}

19/36

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

XXX PIE cannot be produced due to problems with inline assembly.
Since OpenCV is mostly used as a LIBrary, switch to PIC.
.if ${MACHINE_ARCH:Mi386}

CFLAGS += -fPIC

CXXFLAGS += -fPIC

.endtf

CONFIGURE_ARGS = -DBUILD_DOCS=0FF \

-DBUILD_EXAMPLES=0FF \
-DBUILD_IPP_IW=0FF \
-DBUILD_ITT=0FF \
-DBUILD_PERF_TESTS=0FF \
-DBUILD_TESTS=0FF \
-DBUILD_opencv_python2=0FF \
-DINSTALL_PYTHON_EXAMPLES=0FF \
-DINSTALL_TESTS=0FF \

20/36

Example VI

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

.include <bsd.port.arch.

.if ${BUILD_PACKAGES:M-java}
MODULES +=
MODJAVA_VER =

-DOPENCV_SKIP_PYTHON_WARNING=0N \
-DPYTHON_DEFAULT_EXECUTABLE=${MODPY_BIN} \
-DWITH_1394=0FF \

-DWITH_ADE=0FF \

-DWITH_CUDA=QFF \
-DWITH_EIGEN=0FF \

-DWITH_IPP=0FF \
-DWITH_OPENCL=0FF \

-DWITH_V4L=0N \

-DWITH_VTK=0FF \
-DOPENCV_GENERATE_PKGCONFIG=0N

mk>

java
1.8+

21/36

Example VII

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

BUILD_DEPENDS += devel/apache-ant

.else

Safe: Java will be detected, 1f present, but won't be used
CONFIGURE_ARGS += -DBUILD_opencv_java=0FF

.endif

CONFIG_ADJ_CMD = perl -pi

.for _1 _v in ${SHARED_LIBS}

CONFIG_ADJ_CMD += -e 's,lib${_1}.s0([~.1),1ib${_1}.s0.${_v}$$1,g;"
.endfor

NO_TEST = Yes

Enable to run the regression tests

#TEST_IS_INTERACTIVE = X11

#

#CONFIGURE_ARGS += -DDBUILD_TESTS=0N \

-DBUILD_PERF_TESTS=0N

Example VIII

120
121
122
123
124
125
126
127
128
129
130
131
132

post-patch:
perl -pi -e 's@ .x(#\s*include)@$$10"' \
${WRKSRC}/samples/cpp/tutorial_code/core/how_to_scan_images/how_t

post-install:
${MODPY_BIN} ${MODPY_LIBDIR}/compileall.py ${WRKINST}${MODPY_SITEPKG}

do-test:
cd ${WRKBUILD}; \
${MODPY_BIN} ${WRKSRC}/modules/ts/misc/run.py

.include <bsd.port.mk>

23/36

bsd.port.arch.mk

@ a part of bsd.port.mk

o if you don't include it yourself, it will be done automatically

@ set up BUILD_PACKAGES according to PSEUDO_FLAVORS and arches
@ then you test according to BUILD_PACKAGES for configure tests

also properties |

© 0 N O U s W N =

10
11
12
13
14
15
16
17

architecture constants

ARCH !5 jnamg |-

ALL_ARCHS = aarch64 alpha amd64 arm arm64 armv7 hppa i386 landisk loongson \
luna88k m88k macppc mips64 mips64el octeon powerpc64 riscvé4 sgi \
sh sparc64

normally only list MACHINE_ARCH (uname -p) names in these wvartables,

but not all powerpc have apm(4), hence the use of macppc

APM_ARCHS = arm64 amd64 1386 loongson macppc sparc64

BE_ARCHS = hppa m88k mips64 powerpc powerpc64 sparc64

LE_ARCHS = aarch64 alpha amd64 arm i386 mips64el riscv64 sh

LP64_ARCHS = aarch64 alpha amd64 mips64 mips64el powerpc64 riscv64 sparc64

GCC4_ARCHS = alpha hppa sh sparc64

GCC3_ARCHS = m88k

XXX easier for ports that depend on mono

MONO_ARCHS = aarch64 amd64 i386

25 /36

also properties |l

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

OCAML_NATIVE_ARCHS = aarch64 amd64 i386
OCAML_NATIVE_DYNLINK_ARCHS = aarch64 amd64 i386

GO_ARCHS = aarch64 amd64 arm armv7 1386 mips64

RUST_ARCHS = aarch64 amd64 i386 powerpc64 riscv64 sparc64

arches where the base compiler is clang

CLANG_ARCHS = aarch64 amd64 arm i386 mips64 mips64el powerpc powerpc64 riscv64d
arches using LLVM's linker (ld.lld); others use binutils' 1d.bfd

LLD_ARCHS = aarch64 amd64 arm i386 powerpc powerpc64 riscv64

arches where ports devel/llum builds - populates llum ONLY_FOR_ARCHS

as well as available for PROPERTIES checks.

LLVM_ARCHS = aarch64 amd64 arm 1386 mips64 mips64el powerpc powerpc64 riscv64 spa
arches where ports-gcc >4.9 exists. To be used again for modules

GCC49_ARCHS = aarch64 alpha amd64 arm hppa i386 mips64 mips64el powerpc po gc64

MODGCC4_VERSION?7=8

also properties ||

35 # arches where there is a C++11 compiler, either clang in base or ports-gcc
36 CXX11_ARCHS = ${CLANG_ARCHS} ${GCC49_ARCHS}
37 DEBUGINFO_ARCHS = aarch64 amd64

27/36

numbers

@ 9700 Makefiles and fragments
@ 200 uses of bsd.port.arch.mk
@ 90 tests on BUILD_PACKAGES

lazy make to the rescue

Stuff like this actually works:
ONLY_FOR_ARCHS-sub = ${RUST_ARCHS}

.include <bsd.port.arch.mk>
.if ${BUILD_PACKAGES:M-sub}

-]

.endif

D Utk W N =

Industrialisation

@ we had binary packages in 2000

o dpb dates back from 2010

o dedicated build farms for most architectures
o takes between 24 hours and a few weeks

@ regular build stats for everything (thanks landry@)

architecture issues

o intel 64 bits acts as "the bellwether" (most stuff always builds)
@ other architectures get fixed depending on needs

@ some big stuff is (sometimes) not even built because of practicality

compilers

this was painful to create but works

there's a variable COMPILER you can set to choose "the best" compiler

some systems have gcc3 in base, others have gcc 4.2 and others have clang
there's also a more modern gcc in ports and an llvm port

COMPILER is a list of preferred compilers: base-gcc, base-clang, gcc3,
ports-gcc, ports-clang

either it's there, or it's not
links under WRKDIR/bin will be created

odds and ends

@ bootstrapping stuff like go and rust is painful
@ we got a mechanism for PSEUDO_FLAVORS to help dpb and preserve bootstrap

location is everything

lazy make: variable definitions first
then tests and targets

but MODULES

but COMPILER

but bsd.port.arch.mk

very specific location (best of both worlds)

That losing battle

@ language support is the #1 problem (modern C++, rust, go)
@ 32 bit arches are losing

e we got dpb annotations to help (lonesome) but it's still a problem

35/36

77

Any questions 7

