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About

LibreSSL

One of the four major forks of OpenSSL
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1998: OpenSSL forks from/continues SSLeay
accumulates (more) shoddy code, cruft over next 16 years
after lots of disasters, heartbleed makes people look and act

Apr 2014: OpenBSD forks LibreSSL
Jun 2014: Adam Langley (Google) makes BoringSSL public

Nov 2021: Akamai / Microsoft want QUIC ~~ QuicTLS
OpenSSL + patchset to add BoringSSL QUIC API



LibreSSL Main Features
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libtls: sane and easy-to-use wrapper of the SSL/TLS stack
clean room implementation of TLSv1.3 stack (2018-2020)

P centerpieces: record layer and handshake state machine
> missing features: PSK (work in progress), ECH (complicated)
» non-goal: early data

new certificate validator

documentation (unfortunately there's only one schwarze®)
lots of code cleanup

largely compatible with OpenSSL 1.1 on support intersection
this improved a lot due to making structs in LibreSSL opaque
ABI about as stable as OpenSSL 1.1



On OpenSSL compatibility

OpenSSL 1.1 API: have what we need, more than we wanted
No OpenSSL 3 API yet
> 2000 OpenBSD ports link against libcrypto or libssl
< 100 of these need patches (< 5%)
Painful: Qt, PyPy (because of py-cryptography), stunnel
By far the most requested missing feature is Ed25519 . ..
. followed by things like SHA-512/256, SHA-3, Blake, ...

6 ports link against OpenSSL:

mail /opensmtpd-filters /dkimsign flavor (Ed25519 signatures)
mail /postfix (DANE, mostly)

net/bro aka zeek: needs TLS-PRF API

lang/node: Ed25519 + a dozen API functions
net/nagios/nsca-ng: PSK

security/libretls: by design
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Background: Anatomy of a Certificate

Certificates are a complicated data structure.
ASN.1 from RFC 5280:

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm  AlgorithmIdentifier,
signatureValue BIT STRING 1}

P sequence: basically a struct
» TBS: To Be Signed
» Contents of struct

1. what is (to be) signed
2. how is it signed
3. signature



Background: Anatomy of a Certificate (continued)

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT vi,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT Uniqueldentifier OPTIONAL,

-- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT Uniqueldentifier OPTIONAL,

-- If present, version MUST be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Could go on forever.
RFC 5280: 151 pages
> 80 of which are the details of this struct (and CRLs)



A PEM encoded certificate

Most of you will have seen something like this

MIIG4jCCBcqgAwIBAgISBIxsswkXmlb9UVavEeONm1EzMAOGCSqGSIb3DA!
MDIxCzAJBgNVBAYTA1VTMRYwFAYDVQQKEw1MZXQncyBFbmNyeXBOMQswCQ'
EwJSMzAeFwOyMjA3MjExNTQ3MT JaFwOyMjEwMTkxNTQ3MTFaMBoxGDAWBg]

» PEM: Privacy Enhanced Mail (see RFC 7468)
» Base64 encoded DER of certificate
» DER: Distinguished Encoding (Rules) of ASN.1 “struct”



Aside: Why do certs start with MII?

All 133 CA certs in OpenBSD's root bundle start with MIT

$ grep -¢ - ————- BEGIN /etc/ssl/cert.pem

133

$ grep -A1 —— ————- BEGIN /etc/ssl/cert.pem | grep -c MII
133

$ echo -n MIIG | b64decode -r | hexdump -Cv | head -n 1
00000000 30 82 06

30: DER: encoding of an ASN.1 SEQUENCE

82: DER: the length is described by the next two bytes
MII: Base64 of 30 82 + 2 most significant bits of length
length of a cert is > 127 bytes (so needs at least two bytes)
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length of a cert is usually < 16684 bytes,
so the two most significant bits are 0



New Certificate Validator

“Legacy validator” inherited from OpenSSL: unmaintainable
During lockdown, beck® wrote an RFC 5280 validator
Initial code was correct. We only found minor bugs, ...

. then many months of whack-a-mole started
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Lots of software relies on
» strange and overly specific error codes in certain situations
» undocumented behavior of the verify callback
» specific order of traversing the potential chains
P> Took us two years to be reasonably compatible with the
legacy validator
> fix one thing, break ten others
» one hole introduced in the process



Legacy Record Layer Rewrite (WIP)

» jsing@ wrote a very nice record layer underlying TLSv1.3
» Similar ideas can be used for old TLS versions and DTLS
» Goal: remove ssl_pkt.c and d1_pkt.c (terrible code)

» Uses CBS and CBB instead of explicit pointer manipulations

» With this work, DTLSv1.2 support came pretty much for free

» landry@: linphone, baresip
» kn@: tdesktop
» missing bit: BIO_ADDR API, so Qt cannot yet use it



QUIC API
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De facto standard APl by David Benjamin of BoringSSL
OpenSSL PR 8797 (2019): port by Todd Short (Akamai)
Had to wait for OpenSSL 3 (was already late at that point)
May 2021: QUIC standardized in RFCs 9000 — 9002
Sep 2021: OpenSSL 3 released
Oct 2021: OpenSSL want their own stack

» BoringSSL compatibility explicit non-goal

» Unclear why. Someone must have a reason. ..
» QUIC transport protocol not really within OpenSSL's expertise

Nov 2021: QuicTLS announced in IETF side meeting



QUIC API (continued)

beck@ and jsing@ ported BoringSSL API
Plugged very nicely into jsing@'s record layer

>
>
> Needed EVP_chacha20_poly1305 support in libcrypto
» Experimental version will be available in LibreSSL 3.6
» curl can speak QUIC using ngtcp2
» wlallemand added minimal working version to haproxy
Needs SSL_CTX_set_client_hello_cb for full support
BoringSSL API works, but is not great
> exposes full structs and enums publically (sigh...)
» BoringSSL and QuicTLS have already diverged
» ngtcp?2 initializes public struct without C99 initializers
» BoringSSL open to improvements
» QuicTLS probably set in stone
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Primality Testing

Starting point: a 2018 preprint:
Prime and Prejudice: Primality Testing Under Adversarial
Conditions.

Albrecht, Massimo, Paterson, Somorovsky:
» [...] construct 2048-bit composites that are declared prime
with probability 1/16
» [...] the advertised performance [LibreSSL/OpenSSL] is 2780
» [...] for a number of libraries (Cryptlib, LibTomCrypt,
JavaScript Big Number, WolfSSL), we can construct
composites that always pass the supplied primality tests



Primality Testing (continued)

Tricky to fix
» Workaround: crank number of Miller-Rabin rounds (slow)

» Recommendation: Baillie-Pomerance—Selfridge-Wagstaff
algorithm

» Problem: this isn't easy — someone needs time and skills



Primality Testing (continued)

Lucky coincidence: Martin Grenouilloux has time and skills
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background: espie@ finds preprint independently

tells us he has a promising student with a knack for maths
Martin already had a Python implementation

a few weeks later: C implementation lands in my inbox

work stalled for a few weeks due to exams

things become easier with a mostly correct implementation. . .

clean up, optimize, simplify, fix, and commit
result is one of the nicest pieces of code in libcrypto

amazing work by Martin Grenouilloux



RFC 3779 support
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This is about routing and BGP

X.509 Extensions for IP Addresses and AS Identifiers

Issuer of certificate transfers “internet numbers” to subject
Part of libcrypto, ported by job®@ from OpenSSL

Helps rpki-client, makes openssl x509 output nicer
Needed audit, cleanup, lots of fixes, regress

Public APl is pretty broken

Downside: code is inefficient, hit by certificate validator
rpki-client: spends ~ 10% of runtime in RFC 3779 code



Testing, Cl and Coverity

» llya Shipitsin from haproxy has been tremendously helpful

» Helped add ASAN Cl, which has been invaluable
» Also helps with triaging Coverity issues

P tlsfuzzer runs as part of daily regression tests

» Tickles many corner cases
» Helped improve standards compliance a lot
» Hannes Mehnert mentioned it at BSDCan 2019, thanks!

» The Ruby OpenSSL Gem has a very useful test suite

» Joshua Sing rewrote and improved many of the old tests



Thanks
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LibreSSL core team: bcook®, beck®, inoguchi®, jsing@
schwarze@ for awesome documentation and many bug fixes
ajacoutot@, sthen® for help with ports

genua for testing infrastructure and for sponsoring work
Martin Grenouilloux, espie@ for the work on primality testing
Ilya Shipitsin for help with portable

“orbea"” for helping with upstream patches

OpenBSD foundation for sponsoring bulk build machine



