Recent Progress in and around LibreSSL

Theo Buehler
tb@openbsd.org

EuroBSDCon — September 17, 2022

mailto:tb@openbsd.org

About

LibreSSL

One of the four major forks of OpenSSL

| 2

v

1998: OpenSSL forks from/continues SSLeay
accumulates (more) shoddy code, cruft over next 16 years
after lots of disasters, heartbleed makes people look and act

Apr 2014: OpenBSD forks LibreSSL
Jun 2014: Adam Langley (Google) makes BoringSSL public

Nov 2021: Akamai / Microsoft want QUIC ~~ QuicTLS
OpenSSL + patchset to add BoringSSL QUIC API

LibreSSL Main Features

vVvYvyVvyVvyy

libtls: sane and easy-to-use wrapper of the SSL/TLS stack
clean room implementation of TLSv1.3 stack (2018-2020)

P centerpieces: record layer and handshake state machine
> missing features: PSK (work in progress), ECH (complicated)
» non-goal: early data

new certificate validator

documentation (unfortunately there's only one schwarze®)
lots of code cleanup

largely compatible with OpenSSL 1.1 on support intersection
this improved a lot due to making structs in LibreSSL opaque
ABI about as stable as OpenSSL 1.1

On OpenSSL compatibility

OpenSSL 1.1 API: have what we need, more than we wanted
No OpenSSL 3 API yet
> 2000 OpenBSD ports link against libcrypto or libssl
< 100 of these need patches (< 5%)
Painful: Qt, PyPy (because of py-cryptography), stunnel
By far the most requested missing feature is Ed25519 . ..
. followed by things like SHA-512/256, SHA-3, Blake, ...

6 ports link against OpenSSL:

mail /opensmtpd-filters /dkimsign flavor (Ed25519 signatures)
mail /postfix (DANE, mostly)

net/bro aka zeek: needs TLS-PRF API

lang/node: Ed25519 + a dozen API functions
net/nagios/nsca-ng: PSK

security/libretls: by design

>
>
>
>
>
>
>
>

VVVvyVYYVYY

Background: Anatomy of a Certificate

Certificates are a complicated data structure.
ASN.1 from RFC 5280:

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING 1}

P sequence: basically a struct
» TBS: To Be Signed
» Contents of struct

1. what is (to be) signed
2. how is it signed
3. signature

Background: Anatomy of a Certificate (continued)

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT vi,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT Uniqueldentifier OPTIONAL,

-- If present, version MUST be v2 or v3
subjectUniqueID [2] IMPLICIT Uniqueldentifier OPTIONAL,

-- If present, version MUST be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Could go on forever.
RFC 5280: 151 pages
> 80 of which are the details of this struct (and CRLs)

A PEM encoded certificate

Most of you will have seen something like this

MIIG4jCCBcqgAwIBAgISBIxsswkXmlb9UVavEeONm1EzMAOGCSqGSIb3DA!
MDIxCzAJBgNVBAYTA1VTMRYwFAYDVQQKEw1MZXQncyBFbmNyeXBOMQswCQ'
EwJSMzAeFwOyMjA3MjExNTQ3MT JaFwOyMjEwMTkxNTQ3MTFaMBoxGDAWBg]

» PEM: Privacy Enhanced Mail (see RFC 7468)
» Base64 encoded DER of certificate
» DER: Distinguished Encoding (Rules) of ASN.1 “struct”

Aside: Why do certs start with MII?

All 133 CA certs in OpenBSD's root bundle start with MIT

$ grep -¢ - ————- BEGIN /etc/ssl/cert.pem

133

$ grep -A1 —— ————- BEGIN /etc/ssl/cert.pem | grep -c MII
133

$ echo -n MIIG | b64decode -r | hexdump -Cv | head -n 1
00000000 30 82 06

30: DER: encoding of an ASN.1 SEQUENCE

82: DER: the length is described by the next two bytes
MII: Base64 of 30 82 + 2 most significant bits of length
length of a cert is > 127 bytes (so needs at least two bytes)

vVvyYyyvyy

length of a cert is usually < 16684 bytes,
so the two most significant bits are 0

New Certificate Validator

“Legacy validator” inherited from OpenSSL: unmaintainable
During lockdown, beck® wrote an RFC 5280 validator
Initial code was correct. We only found minor bugs, ...

. then many months of whack-a-mole started

vVvyVvyVvyy

Lots of software relies on
» strange and overly specific error codes in certain situations
» undocumented behavior of the verify callback
» specific order of traversing the potential chains
P> Took us two years to be reasonably compatible with the
legacy validator
> fix one thing, break ten others
» one hole introduced in the process

Legacy Record Layer Rewrite (WIP)

» jsing@ wrote a very nice record layer underlying TLSv1.3
» Similar ideas can be used for old TLS versions and DTLS
» Goal: remove ssl_pkt.c and d1_pkt.c (terrible code)

» Uses CBS and CBB instead of explicit pointer manipulations

» With this work, DTLSv1.2 support came pretty much for free

» landry@: linphone, baresip
» kn@: tdesktop
» missing bit: BIO_ADDR API, so Qt cannot yet use it

QUIC API

vVvvyVvVvyyypy

De facto standard APl by David Benjamin of BoringSSL
OpenSSL PR 8797 (2019): port by Todd Short (Akamai)
Had to wait for OpenSSL 3 (was already late at that point)
May 2021: QUIC standardized in RFCs 9000 — 9002
Sep 2021: OpenSSL 3 released
Oct 2021: OpenSSL want their own stack

» BoringSSL compatibility explicit non-goal

» Unclear why. Someone must have a reason. ..
» QUIC transport protocol not really within OpenSSL's expertise

Nov 2021: QuicTLS announced in IETF side meeting

QUIC API (continued)

beck@ and jsing@ ported BoringSSL API
Plugged very nicely into jsing@'s record layer

>
>
> Needed EVP_chacha20_poly1305 support in libcrypto
» Experimental version will be available in LibreSSL 3.6
» curl can speak QUIC using ngtcp2
» wlallemand added minimal working version to haproxy
Needs SSL_CTX_set_client_hello_cb for full support
BoringSSL API works, but is not great
> exposes full structs and enums publically (sigh...)
» BoringSSL and QuicTLS have already diverged
» ngtcp?2 initializes public struct without C99 initializers
» BoringSSL open to improvements
» QuicTLS probably set in stone

v

Primality Testing

Starting point: a 2018 preprint:
Prime and Prejudice: Primality Testing Under Adversarial
Conditions.

Albrecht, Massimo, Paterson, Somorovsky:
» [...] construct 2048-bit composites that are declared prime
with probability 1/16
» [...] the advertised performance [LibreSSL/OpenSSL] is 2780
» [...] for a number of libraries (Cryptlib, LibTomCrypt,
JavaScript Big Number, WolfSSL), we can construct
composites that always pass the supplied primality tests

Primality Testing (continued)

Tricky to fix
» Workaround: crank number of Miller-Rabin rounds (slow)

» Recommendation: Baillie-Pomerance—Selfridge-Wagstaff
algorithm

» Problem: this isn't easy — someone needs time and skills

Primality Testing (continued)

Lucky coincidence: Martin Grenouilloux has time and skills

| 2

vVvVvvyVvvVvyVvyYVvyy

background: espie@ finds preprint independently

tells us he has a promising student with a knack for maths
Martin already had a Python implementation

a few weeks later: C implementation lands in my inbox

work stalled for a few weeks due to exams

things become easier with a mostly correct implementation. . .

clean up, optimize, simplify, fix, and commit
result is one of the nicest pieces of code in libcrypto

amazing work by Martin Grenouilloux

RFC 3779 support

vVvVvvyVvvVvyVvyVvYvyy

This is about routing and BGP

X.509 Extensions for IP Addresses and AS Identifiers

Issuer of certificate transfers “internet numbers” to subject
Part of libcrypto, ported by job®@ from OpenSSL

Helps rpki-client, makes openssl x509 output nicer
Needed audit, cleanup, lots of fixes, regress

Public APl is pretty broken

Downside: code is inefficient, hit by certificate validator
rpki-client: spends ~ 10% of runtime in RFC 3779 code

Testing, Cl and Coverity

» llya Shipitsin from haproxy has been tremendously helpful

» Helped add ASAN Cl, which has been invaluable
» Also helps with triaging Coverity issues

P tlsfuzzer runs as part of daily regression tests

» Tickles many corner cases
» Helped improve standards compliance a lot
» Hannes Mehnert mentioned it at BSDCan 2019, thanks!

» The Ruby OpenSSL Gem has a very useful test suite

» Joshua Sing rewrote and improved many of the old tests

Thanks

vVvvyVvYvVvyVvyYvyy

LibreSSL core team: bcook®, beck®, inoguchi®, jsing@
schwarze@ for awesome documentation and many bug fixes
ajacoutot@, sthen® for help with ports

genua for testing infrastructure and for sponsoring work
Martin Grenouilloux, espie@ for the work on primality testing
Ilya Shipitsin for help with portable

“orbea"” for helping with upstream patches

OpenBSD foundation for sponsoring bulk build machine

