
Double feature:
To cache or not to cache making pkg_add faster

and
How I learnt not to worry and use 5.36

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr>

September 19, 2023
Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.361 / 58

The story so far (2022)

I wrote pkg_add a long time ago. Historically, we do "just in time" updates.
open new package and peek at meta information
decide whether we want to update
if so, extract the new package, then delete the old one
if not, just close the connection and move to the next one

However for complexity reasons, the connection stuff is handled through ftp(1) (and
has been privilege separated for a few years)

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.362 / 58

The meta information

We got structured information (packing-lists) that looks like this:
1 @pkgpath x11/dbus
2 @newgroup _dbus:572
3 @newuser _dbus:572:_dbus::dbus user:/nonexistent:/sbin/nologin
4 @extra ${SYSCONFDIR}/machine-id
5 @rcscript ${RCDIR}/messagebus
6 @bin bin/dbus-cleanup-sockets
7 @bin bin/dbus-daemon
8 @bin bin/dbus-launch
9 @bin bin/dbus-monitor

10 @bin bin/dbus-run-session
11 @bin bin/dbus-send
12 @bin bin/dbus-test-tool
13 [... more files]

This is the source information for the dbus package, telling us it requires some
user/groups, has a service start-up script, and contains a bunch of files

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.363 / 58

The whole story I

After going through pkg_create, the full packing-list looks more like
1 @name dbus-1.14.0v0
2 @version 8
3 @comment pkgpath=x11/dbus,-main ftp=yes
4 @arch amd64
5 +DESC
6 @sha TYbBC2oO7XXOXqnQOFU6qikEuiN+fqoN2azXrJA9jJg=
7 @size 448
8 @pkgpath x11/dbus
9 @wantlib X11.18.0

10 @wantlib c.96.1
11 @wantlib execinfo.3.0
12 @wantlib expat.14.0
13 @wantlib pthread.26.1
14 @wantlib xcb.4.1
15 @newgroup _dbus:572
16 @newuser _dbus:572:_dbus::dbus user:/nonexistent:/sbin/nologin
17 @cwd /usr/local

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.364 / 58

The whole story II

18 @extra /etc/machine-id
19 @rcscript /etc/rc.d/messagebus
20 @sha G8InGFO+lEOiPUMpXqicxPO1KEkofHOguRhxV9sMXHk=
21 @size 172
22 @ts 1653570364
23 @bin bin/dbus-cleanup-sockets
24 @sha lew9j03YckJ1VnMPtypbKh1k1eedAXgwCvYU3hE44jU=
25 @size 13318
26 @ts 1653570364
27 [... more files]

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.365 / 58

Structured information

a packing-list is a structured object which has constructors. Most often it starts as
my $plist = OpenBSD::PackingList->from_file("filename");

objects (packing elements) can be added to it using the right method:
OpenBSD::PackingElement::Wantlib->add($plist, $w);

some complex objects can have a multiline representation, like files:
name
extra modes
checksum
timestamp
ownership

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.366 / 58

OO properties
there’s a whole hierarchy of objects: anything file-system related is a FileObject,
annotations are Meta, anything depend-related is a Depend
objects are emitted in a specific order: first all the meta information, then the
actual objects (in order)
most operations happen as visitors on the packing-list
there are specialized scanners that take advantage of the text structure of the
packing-list to avoid reading it all

1 sub DependOnly($fh, $cont)
2 {
3 while (<$fh>) {
4 if (m/^\@(?:libset|depend|wantlib|define-tag)\b/o) {
5 &$cont($_);
6 # XXX optimization
7 } elsif (m/^\@(?:newgroup|newuser|cwd)\b/o) {
8 last;
9 }

10 }
11 }
12

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.367 / 58

Speed

In order to decide whether to update a package
we look up all packages that have the same name with a different version number
we open every package to see whether it’s a valid candidate
we filter the ones we don’t want
pathological case: autoconf. We have a branch for each version, which means 17
packages to consider.
... and we decide to update

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.368 / 58

Slower and slower

for a long time, the network was slow, bandwidth-wise, so opening lots of files was
not a big issue
actually properly closing was an issue with ftp: premature closing requires full
telnet support (with "attention" commands")
and so I had to fix ftp-proxy back in the day
... but recently, latency is more of an issue, most people have lots of bandwidth,
and so does our current setup

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.369 / 58

CDN for the masses

We got a CDN
ftp is dead, long live http(s).
establishing connections might be a bit slow
the cdn first gives you a redirect which means two connections
we’ve parsed the redirect from the start, to make sure an update connects to
exactly one mirror (*)
bandwidth is not an issue, latency is

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3610 / 58

Shearing

When the mirrors update, it’s not instant: one snapshot is 64G.
Safeguards (like library versions) will be verbose but protect us.
Todo: make them less verbose and more useful

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3611 / 58

https ? not such a good idea

http connection establishment is 1 ½ RTT
https is 2 ½ RTT at best !
we did implement session resumption (with fun results)
TLS 1.3 should help a lot (not available at the time)
... so updating is slow, because we establish lots of connections
also, signatures

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3612 / 58

Signatures ?

1 untrusted comment: verify with openbsd-69-pkg.pub
2 RWSG2ib5ZXSfQTrcxxj+A9b6oeFI/OiJVB49nvIs+UPIull+Mk/BclTXRuG4a+XbnyoiZffDILfP58BNelK0yMjZNEEfPiR6OQA=
3 date=2021-02-26T23:06:32Z
4 key=/etc/signify/openbsd-69-pkg.sec
5 algorithm=SHA512/256
6 blocksize=65536
7

8 9d61ddfc76218e7c3745bd942a29725ff1bc651f64af27a450da33a73f292d69
9 8621c7932e29c838783177287fc5779186c854b35eaa541e787979f78288c2a6

10 d895cc173cb9058341bbcbe6abe3c018b915eb9218fd65c31f490f9af9c11041
11 9895735d7a109e497ef3f616f35938ae4d6e66f851f038ba50aa2a69808ef53a
12 ce23313490656aaeda9b21aa137a7e70fb268db9372cafeefe860e3fb98c4dfb
13 d34eedc74d714c7a5702b386d36ee422d614d0239cf45e3ae417dd5cd6a09f6f
14 55330726f9221f239c76d4809463ebc251a634360f7098cff98931f8948b7669
15 e84f66e180f1be0c5ef057ea2c4bc74106791b6b794e2de74dc56a9968fa8410
16 e2e4283c81ace8474a32dfc6e43fa3515f02e9bdc93daa86d84875cf9d4ac72d
17 aa1588b1ca21bf13dc132fd12e485cf0edebc787ee53a4cf6df6aa8d5e5e5611
18 9f6723f0419bc16b0a1230407ab3e25015dda27793c424bc50a6ace4f7de4a2e

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3613 / 58

chicken and egg

We’d like to store the update info somewhere but
we don’t have any db tools in the base system
we need to generate and grab it securely from the cdn

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3614 / 58

no database

But we have locate in the base system.
it’s been designed to store efficiently "similar" strings (by sorting and compressing
according to prefix)
already used for pkglocatedb
this stores each path in packages prefixed by the pkgname/path location

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3615 / 58

pkglocatedb

1 nausicaa$ pkglocate /usr/local/bin/vim
2 graphviz-2.42.3p0:math/graphviz,-main:/usr/local/bin/vimdot
3 vim-8.2.5036-gtk3-lua:editors/vim,-main,gtk3,lua:/usr/local/bin/vim
4 vim-8.2.5036-gtk3-lua:editors/vim,-main,gtk3,lua:/usr/local/bin/vimdiff
5 vim-8.2.5036-gtk3-lua:editors/vim,-main,gtk3,lua:/usr/local/bin/vimtutor
6 vim-8.2.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby:/usr/local/bin/vim
7 vim-8.2.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby:/usr/local/bin/vimdiff
8 vim-8.2.5036-gtk3-perl-python3-ruby:editors/vim,-main,gtk3,perl,python3,ruby:/usr/local/bin/vimtutor
9 vim-8.2.5036-gtk3-python3:editors/vim,-main,gtk3,python3:/usr/local/bin/vim

10 [...]

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3616 / 58

pkglocatedb 2

It is very efficient: 300MB compress to 23MB
It is fast
It is in the base system

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3617 / 58

locate vs updateinfo

generate data with pkgname:update-info-line

this should compress correctly
where to put it to make this accessible
I did a script that worked. Compression is okay (compresses 23M to 3M)

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3618 / 58

chicken and egg too

I gave the script to my fellow builders and asked for pkgindex.tgz to be on the
mirrors
they did it for a while, but I got distracted
and then they no longer did it
right when I got motivated again

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3619 / 58

so better integration

it had to be on, all the time. Add glue at the end of dpb to generate it ?
delivery system. Sign it specifically ? teach pkg_add how to read it ?
scrape that, let’s use quirks

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3620 / 58

quirks ?

Quirks is the package that holds "Exceptions" to the rules (such as package
renames, or packages that got dropped).
First action of pkg_add ever is always to try to update quirks.
So it’s a natural location to drop update info

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3621 / 58

first experiment

so I got the script that builds the db into quirks
told my friends to always regenerate quirks at the end
and waited for the new package to show up

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3622 / 58

Timings: whazzza

(there was a small issue with "always-update" packages, let’s avoid them)
try to grab the updateinfo from the locate before going to the packages
result over twenty times speed-up
so worth making it work

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3623 / 58

details

the db is linked to a given quirks, which means a given package repository.
this is not a big issue because we got unique objects for repositories
furthermore, quirks is an "always-update" package, so if we find we don’t need to
update it, it means the quirks we got contains update info for our packages
we can actually put that in production !

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3624 / 58

more speed-ups I

we run a separate locate for each updateinfo

we can actually run a single locate upfront, because we got the list of pkgnames
we want to handle

1 sub prime_update_info_cache($self, $state, $setlist)
2 {
3 my $progress = $state->progress;
4 my $found = {};
5

6 for my $set (@{$setlist}) {
7 for my $h ($set->older, $set->hints) {
8 next if $h->{update_found};
9 my $name = $h->pkgname;

10 my $stem = OpenBSD::PackageName::splitstem($name);
11 next if $stem =~ m/^\.libs\d*\-/;
12 next if $stem =~ m/^partial\-/;
13 $stem =~ s/\%.*//; # zap branch info
14 $stem =~ s/\-\-.*//; # and set flavors

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3625 / 58

more speed-ups II

15 $self->add_stem($stem);
16 }
17 }
18 my @list = sort keys %{$self->{stems}};
19 return if @list == 0;
20

21 my $total = scalar @list;
22 $progress->set_header(
23 $state->f("Reading update info for installed packages",
24 $total));
25 my $done = 0;
26 my $oldname = "";
27

28 open my $fh, "-|", $self->pipe_locate(map { "$_-[0-9]*"} @list)
29 or $state->fatal("Can't run locate: #1", $!);
30 while (<$fh>) {
31 if (m/^(.*?)\:(.*)/) {
32 my ($pkgname, $value) = ($1, $2);

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3626 / 58

more speed-ups III

33 $found->{OpenBSD::PackageName::splitstem($pkgname)} = 1;
34 $self->{raw_data}{$pkgname} //= '';
35 $self->{raw_data}{$pkgname} .= "$value\n";
36 if ($pkgname ne $oldname) {
37 $oldname = $pkgname;
38 $done++;
39 }
40 $progress->show($done, $total);
41 }
42 }
43 close($fh);
44 return unless $state->defines("CACHING_VERBOSE");
45 for my $k (@list) {
46 if (!defined $found->{$k}) {
47 $state->say("No cache entry for #1", $k);
48 }
49 }
50 }

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3627 / 58

always-update

at first those were not handled at all
because we handled the full packing-list, which is ordered
it means a package that needs an update each time it changes
after a few tries, I decided that storing a crypto hash would work
so now it is @option always-update <hash value>

and pkg_create generates it

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3628 / 58

Unforeseen consequences: new bottlenecks

LRU bugs
not moving files if possible (extract/delete/install pattern)
User interface (processing large packing lists)

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3629 / 58

the generation of quirks: McGyver

Rougly ten lines in dpb:
1 if ($state->{all}) {
2 my $core = DPB::Core->get;
3 my $w = DPB::PkgPath->new('devel/quirks');
4 if ($state->{engine}{built_packages}) {
5 $state->grabber->clean_packages($core, $w->fullpkgpath);
6 }
7 my $subdirlist = {};
8 $w->add_to_subdirlist($subdirlist);
9 $state->grabber->grab_subdirs($core, $subdirlist, undef);

10 $state->engine->check_buildable;
11 $core->mark_ready;
12 main_loop();
13 }

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3630 / 58

the generation of quirks: v2

1 my @later = $state->grabber->later;
2 if (@later != 0) {
3 my $core = DPB::Core->get;
4 my $subdirlist = {};
5 for my $w (@later) {
6 if ($state->{engine}{built_packages}) {
7 $state->grabber->clean_packages($core,
8 $w->fullpkgpath);
9 }

10 $w->add_to_subdirlist($subdirlist);
11 }
12 $state->grabber->grab_subdirs($core, $subdirlist, undef);
13 $state->engine->check_buildable;
14 $core->mark_ready;
15 main_loop();
16 }

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3631 / 58

Making things better

Agressively review old code and kill it
Better comments about stuff that’s now stabilized
Document "best practices"

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3632 / 58

perl v5.36
From some time now, perl has got "experimental features", which is a good and a bad
thing

good
Perl is still evolving
it gets all the good stuff from perl6 over the years
For instance yada yada

bad
but they are experimental
so you can’t use them in production
see switch operator

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3633 / 58

"Yada yada"

Acknowledges "fill in the blanks Rapid Application Developement"
"Yada Yada" is just ...

1 if ($verbose && ...) {
2 do_something();
3 }
4

5 for my $i (@list) {
6 if ($i =~ m/shouldn't happen/) {
7 ...;
8 }
9 }

That’s actually very useful

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3634 / 58

given/when

There was some kind of "pattern matching" related to keywords given and when that
was available in perl, very similar to what pattern matching looks like in ocaml.
But for various reasons, the experiment didn’t pan out! so anyone who’s been using
these is up shit creek!

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3635 / 58

semantic versioning

For a long time, use has been used (lol) to indicate semantic variations on perl (like
use strict;,
use warnings;
or more complicated forms, e.g.,
use feature qw(say);
The most interesting variation is
use v5.something;
which does enable various thingies.

fight or flight
For production code, it makes sense to use a recent version and its improvements...
as long as they’re not experimental !!!

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3636 / 58

Prototypes

It’s totally different from other languages.
Prototypes are used to “create syntax” or rather reproduce built-in behaviors.
Completely esoteric syntax

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3637 / 58

Example I

1 sub mypush (\@@)
2 {
3 }
4 ...
5 mypush @l, 1, 2, 3;
6

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3638 / 58

Example II

1 sub try(&@)
2 {
3 my ($try, $catch) = @_;
4 eval { &$try };
5 if ($@) {
6 &$catch;
7 }
8 }
9

10 sub catch(&)
11 {
12 return $_[0];
13 }
14

15 try {
16 ...
17 } catch {
18 ...
19 }

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3639 / 58

Signatures

so what’s called "prototypes" in other languages is called "signatures" in perl !
it’s ambiguous wrt prototypes
so accordingly prototypes require annotation e.g.,

1 sub try :prototype(&@)($try, $catch)
2 {
3 eval { &$try() };
4 if ($@) {
5 &$catch;
6 }
7 ...
8 }
9

10 sub catch :prototype(&)($code)
11 {
12 return $code;
13 }
14

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3640 / 58

Converting to 5.36: other stuff

Every prototype needs to be made unambiguous so, sub foo(...) → sub foo
:prototype(...).
Code calls may need explicit parentheses: stuff like

1 &$code;

does call code in the same context as the parent with the same parameters. Use
1 &$code();

instead.
Object calls through indirect syntax has been deprecated.

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3641 / 58

Sometimes useful

1 package OpenBSD::PackingElement::Cwd;
2 sub find_extractible # forwarder
3 {
4 &OpenBSD::PackingElement::Meta::find_extractible;
5 }

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3642 / 58

Indirect syntax ?

Again linked to built-ins.
Printing to a file looks like

1 print $fh "result is ", $i, "\n";

as opposed to the less fancy
1 $fh->print("result is ", $i, "\n");

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3643 / 58

Converting to 5.36: signatures

Modelled after C++
named scalar parameters like $x

unnamed parameters if unused
default values for parameters with $x = value

But perl!
Can slurp renaming parameters with either

1 sub f($x, $y, @l)

or
1 sub f($x, $y, %h)

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3644 / 58

What about @_

1 Implicit use of @_ in subroutine entry with signatured subroutine
2 is experimental at a line 5.

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3645 / 58

Why use signatures I

It makes perl code looks almost normal! before
1 sub set
2 {
3 my ($self, $set) = @_;
4 delete $self->{object};
5 $self->{set} = $set;
6 return $self;
7 }
8
9 sub object

10 {
11 my ($self, $object) = @_;
12 delete $self->{set};
13 $self->{object} = $object;
14 return $self;
15 }
16
17 sub what
18 {
19 my ($self, $what) = @_;
20 $self->{what} = $what;
21 return $self;
22 }
23
24 sub new
25 {
26 my $class = shift;
27

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3646 / 58

Why use signatures II

28 bless {}, $class;
29 }
30

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3647 / 58

after
1 sub set($self, $set)
2 {
3 delete $self->{object};
4 $self->{set} = $set;
5 return $self;
6 }
7
8 sub object($self, $object)
9 {

10 delete $self->{set};
11 $self->{object} = $object;
12 return $self;
13 }
14
15 sub what($self, $what = undef)
16 {
17 $self->{what} = $what;
18 return $self;
19 }
20
21 sub new($class)
22 {
23 bless {}, $class;
24 }
25

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3648 / 58

What about documentation

because of OO
sometimes a base method does nothing

1 package OpenBSD::PackingElement;
2 # $self->find_dependencies($state, $l, $checker, $pkgname)
3 sub find_dependencies($, $, $, $, $)
4 {
5 }
6

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3649 / 58

Problems

Errors happen at runtime, so difficult to catch them all
1 Too few arguments for subroutine 'main::f'
2 (got 2; expected 3) at b line 11.

Much harder on lambdas
1 Too few arguments for subroutine 'main::__ANON__'
2 (got 2; expected 3) at b line 11.
3

(it would be great to annotate the name of the anonymous routine with line
number and filename)

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3650 / 58

Paradigm shift

perl has long been fuzzy on parameter numbers
some default interfaces use this to "tack on" parameters (e.g. signals)
some OO code has been designed to take advantage of this

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3651 / 58

Signals

like in C, normal signal handlers get the signal number (but it’s not guaranteed)
There are extra signal handlers for __DIE__ or __WARN__ and these take optional
messages.

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3652 / 58

Easy solutions

in the worst case, you can slurp stuff with @
but it’s better to track the error and get the right number of parameters
sometimes variations, because of time (a parameter is no longer used)
or variation in parameters used for a constructor subclass

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3653 / 58

real example

1 package OpenBSD::ProgressMeter;
2 sub new($class, $state)
3 {
4 # now saves state
5 }
6

7 sub for_list($self, $msg, $l, $code) # + $state

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3654 / 58

serendipity

We can use @ to get parameters through until we have a default value

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3655 / 58

real example

1

2 package OpenBSD::PackingList;
3

4 sub read($a, $u, $code = \&defaultCode)
5

6 sub fromfile($a, $fname, $code = \&defaultCode)
7

8 package OpenBSD::PackageLocation;
9 sub grabPlist($self, $code = \&OpenBSD::PackingList::defaultCode)

10

11 sub grabPlist($self, @code)

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3656 / 58

Grepping
1 package OpenBSD::PackingElement::Cwd;
2 sub find_extractible # forwarder
3 {
4 &OpenBSD::PackingElement::Meta::find_extractible;
5 }
1

2 my $handler = sub { # SIGHANDLER
3 $state->{received} = shift;
4 $state->errsay("Interrupted");
5 if ($state->{hardkill}) {
6 delete $state->{hardkill};
7 return;
8 }
9 $state->{interrupted}++;

10 };
11

12 local $SIG{'INT'} = $handler;
13 local $SIG{'QUIT'} = $handler;
14 local $SIG{'HUP'} = $handler;
15 local $SIG{'KILL'} = $handler;
16 local $SIG{'TERM'} = $handler;Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3657 / 58

coda

insufficient coverage of the code base
should look at Devel::Cover and subclasses
static validation is lagging (perlcritic).
future optimizations.

Marc Espie <espie@openbsd.org>, <marc.espie@epita.fr> Double feature: To cache or not to cache making pkg_add faster andHow I learnt not to worry and use 5.3658 / 58

