
Xenocara - integrating X.Org in OpenBSD

Matthieu Herrb

OpenBSD/X.Org

FOSDEM February 24, 2007



Agenda

1 Introduction

2 Xenocara

3 Lessons in X development

4 OpenBSD & X security

5 Conclusions



Agenda

1 Introduction

2 Xenocara

3 Lessons in X development

4 OpenBSD & X security

5 Conclusions



OpenBSD

Remainder:

OpenBSD is a free multi-platform OS based on BSD 4.4.

Focus on usability, portability, correctness and proactive
security.

One release every six months.
Current version is 4.0, released Dec, 1.

Kernel, user-land & docs maintained by the same people.

Base system includes the X window system with a minimal set
of applications (fvwm, xterm, etc.)

Third party applications (inc. KDE, Gnome, OpenOffice)
available through the ports mechanism.



Features

Strong networking capabilities:

the PF packet filter

routing daemons: OpenBGPd, OpenOSPFd, ripd

IPSec, IPv6

high availability: CARP, pfsync, sasyncd, hoststated

spamd

Hardware support:

wireless adapters,

disk controllers, including RAID management,

ethernet cards,

graphics cards.



OpenBSD ports

Goal: to provide binary packages of 3rd party applications, built
from their source with patches to customise/fit them better on
OpenBSD.
The ports source tree contains:

references to the original sources and how to fetch them,

a human readable description of the port,

dependencies data (including shared lib revisions),

a packing list which describes what’s installed,

a make based build infrastructure that controls:

fetching the sources and patching,
configuring/compiling with the provided tools,
installing into a temporary location and building the binary
package.
installing the binary package into its final destination
(/usr/local).



Agenda

1 Introduction

2 Xenocara

3 Lessons in X development

4 OpenBSD & X security

5 Conclusions



X in OpenBSD

X has been integrated in OpenBSD’s source for a long time
(XFree86 3.3, then 4.x and now X.Org 6.8 and 6.9).
OpenBSD ships the applications in the old monolith tree plus some
add-ons:

fvwm, wm2: alternatives to twm

ssh-ask-pass, xidle, xlock, xsystrace: security

xvctl

ws input driver

The X server supports 10 architectures (alpha, amd64, hp300,
i386, mac68k, macppc, sparc, sparc64, vax and zaurus).



X sources

Maintained in the OpenBSD CVS repository.

Based on released versions, plus OpenBSD-specific patches :

privilege separation,

support for some legacy architectures,

bug fixes not yet integrated or released upstream.

Merging as many local changes as possible back to X.Org.



X.Org modular tree

Several questions appeared with the modular tree:

make sure that autotools based configuration also works on
*BSD,

how to manage dependencies between the 300+ modules?

how to integrate 3rd party sources that are no more in X.Org?

how to cope with individual releases of modules?

what to do with the CVS repository?

where to install the binaries?



The Xenocara build system

Xenocara aims at answering those questions:

X will not move to the ports tree,

Re-use ideas from ports to drive the autotools builds with
make and adapt libtool’s behaviour,

Xenocara is much simpler than ports though.

bsd.xorg.mk is < 200 lines
Makefile.bsd-wrapper are mostly one-liners
dependencies handled by explicit ordering of make targets.

New directory in the OpenBSD CVS repository: xenocara.

Still installing everything in /usr/X11R6

In the process, a BSD-licensed implementation of pkg-config in
perl was developed (Chris Kuethe & Marc Espie) and has replaced
the GNU version in the ports tree.



Schedule

Xenocara was able to do a full build of X.Org for the 1st time on
the way back from fosdem last year.

Since then, lots of changes and fixes have happened.

Initial plan was to switch to xenocara (X.Org 7.2 based) for 4.1,
but X.Org 7.2 got delayed and some developers were
uncomfortable with switching too late in the release cycle.

The switch will occur just after code unfreeze in april



Todo list

Fix remaining problems in the ports tree (main offenders:
FreeType 2.2.x & pkg-config files)

Create branches in copies of X.Org git repositories for
OpenBSD local changes. git.xenocara.org had a start at
this.

Merge more local changes back to X.Org

Repair X.Org -current build on BSD (broken by Daniel’s work
on input)

Get kdrive working with wscons input drivers and wsfb
framebuffer (useful for Legacy architectures)

wscons input for dmx

resume work on security audits of the code

DRI

...

→ the list is long, help is welcome.



Agenda

1 Introduction

2 Xenocara

3 Lessons in X development

4 OpenBSD & X security

5 Conclusions



Not all the X World is GNU/Linux

A lot of work has been done for the modular tree by X.Org
developers. Most of this work is nowadays done on Linux.

Exceptions: Solaris (Alan Coopersmith), *BSD (Jeremy C. Reed,
& Matthieu Herrb), SCO (Kean Johnston), ...

Windows (Cygwin/X) and Mac OS X/Darwin support ?

The MIT/X11 license is very important for many non-GNU/Linux
users of X.

Support of legacy hardware (1-8 bpp) is also important for some
OpenBSD developers & users.



Guidelines for multi-platform X development

The build system of X.Org modules should only depend on
the tools already listed in ModularDevelopper’s guide.
(XCB causes us a problem...)

Don’t rely on sh being bash or make being GNU-make.

Don’t assume glibc or GNU userland run-time environment

OpenBSD and others don’t support DRI yet: please test that
drivers build without DRI (or drop this option completely)

Pay more attention to API changes and shared library
revisions.



About automake/autoconf

Autoconf philosophy: test for features instead of specific operating
systems/versions: is good. Helps to reduce #ifdef mazes.

X sources still need lots of work in this area

But there are things that cannot be tested easily by an autoconf
test: thus X.Org new configure scripts are still full of os-specific
tests, and they don’t always work as intended on the targeted
platform.

A bit painful to debug and fix.

Automake in xserver takes > 1 hour alone on a 600 MHz arm
CPU.

Not easy to avoid depending on installed automake/autoconf...



Libtool hell

Libtool is a necessary evilness but:

have to reconfigure it for each lib (slow even with autoconf
cache)

too complicated, makes errors difficult to spot

... insert you favourite rant here...

Fortunately, using libtool from OpenBSD’s ports tree gives us
some benefit:

control over shared libs revision numbers

bug fixes



Agenda

1 Introduction

2 Xenocara

3 Lessons in X development

4 OpenBSD & X security

5 Conclusions



Benefits of OpenBSD security features

Running X applications on OpenBSD automatically benefits of
security features that are standard in OpenBSD :

stack protection via Propolice

WˆX on supported platforms

shared libs address space randomisation

(See Theo’s papers on attacks mitigation techniques for details)



Privilege separation in the X server

Limit the impact of malicious code execution in the X server by
applying privilege separation here too:

Initialise all things that need root privileges as early as
possible (before parsing the configuration file)

fork and have the main process change (definitively) it’s uid
to a non-privileged one.

let the (privileged) child handle the few things that need root
after initialisation, with lots of tests and restrictions, to avoid
abuse.

Works great, but the unprivileged process still has full access to the
hardware on most platforms.



X vs Kernel security

Modern systems make a difference between root (uid==0 in
userland) privilege and kernel privileges:

BSD securelevel > 0

SELinux and other MAC frameworks

...

The X server having full control on the hardware via I/O ports and
physical memory access breaks these models (see Loic Duflot’s
paper at CanSecWest’06).

Something ought to be done about that...



Solutions

kernel-aided libpciaccess to filter PCI config space writes

vesafb: unaccelerated dumb framebuffer based on VESA ≥
2.x BIOS. (different from X’s vesa driver)

new driver model where all initialisation (including mode
setting) is done in the kernel drivers (similar to Linux fbdev).

KGI? (what’s the good interface for acceleration?)

EGL?

OpenBSD currently implements vesafb.



Agenda

1 Introduction

2 Xenocara

3 Lessons in X development

4 OpenBSD & X security

5 Conclusions



Short future - OpenBSD 4.1

Still based on X.Org 6.9

vesafb + wsfb for an unprivileged X server



Longer term - OpenBSD 4.2 and beyond

Switch to Xenocara (X.Org 7.2) just after 4.1 release

Fix ports problems wrt modular X

More in-kernel support for graphics cards

DRI?

nice graphics by Ty Semaka...



Questions ?


	Introduction
	Xenocara
	Lessons in X development
	OpenBSD & X security
	Conclusions

