
Game of Trees Daemon

Stefan Sperling <stsp@openbsd.org>

FOSDEM 2023

What is Game of Trees?

Game of Trees (Got) is a distributed version control system.

in development since November 2017

compatible with Git repositories and Git network protocol

uses OpenBSD pledge and unveil

ISC licence

-portable version for Linux, MacOS, {Free,Net,Dragonfly}BSD

Game of Trees Daemon 2/37

Game of Trees Clients Design

library

libexec helpers

fork+exec

Got work tree

Disk I/O

Git repository

Disk I/O

got tog gotadmin gotwebd

Game of Trees Daemon 3/37

got – command line interface

Commands:

import, clone, fetch, checkout, update

log, diff, blame, tree, status

ref, branch, tag

add, remove, patch, revert, commit, send

cherrypick, backout, rebase, histedit

integrate, merge, stage, unstage, cat

Online documentation: https://gameoftrees.org/got.1.html

Game of Trees Daemon 4/37

https://gameoftrees.org/got.1.html

gotadmin – repository administration

Commands:

init, info, pack, indexpack, listpack, cleanup

Online documentation:
https://gameoftrees.org/gotadmin.1.html

Game of Trees Daemon 5/37

https://gameoftrees.org/gotadmin.1.html

tog – ncurses-based interactive repository browser

Supports log, diff, blame, tree, and ref views
Game of Trees Daemon 6/37

gotwebd – repository viewer for web browsers

Shows commits, diffs, trees, blobs, and tags (with RSS feed)

Game of Trees Daemon 7/37

gotd – Game of Trees Daemon

Git repository server implementation

in development since September 2022

can be installed on OpenBSD -current: pkg add gotd

not yet available in -portable

Game of Trees Daemon 8/37

gotd – Game of Trees Daemon

Use cases:

1. host Git repositories for open source projects or private use

each project should host their own server instance

2. host public read-only Git repository mirrors

let anonymous users fetch source code over SSH,1

authenticating the server but not the client

1like AnonCVS: https://www.openbsd.org/papers/anoncvs-paper.pdf
Game of Trees Daemon 9/37

https://www.openbsd.org/papers/anoncvs-paper.pdf

gotd live on the internet

git clone URL for OpenBSD version of Got:
ssh://anonymous@got.gameoftrees.org/got.git

git clone URL for -portable version of Got:
ssh://anonymous@got.gameoftrees.org/got-portable.git

Host key fingerprints:

SHA256:aDX3rrQNDfIA5lyXIbynY+goiomgR4Cdx5j4qmWq26I (DSA)

SHA256:kmeRVbw2BLak1iZJIv6/AkNhGqW97WIu58SeH8kUfls (ECDSA)

SHA256:jvQMQNSKE+p7roYA3Tl8/giZyOUqL7emXS+lJT7KMQ4 (ED25519)

SHA256:q/CWVAukwojxNL3srvWhfHZX00t+eO1IhmnwFAEhE6o (RSA)

Same info also on https://gameoftrees.org/code.html

Game of Trees Daemon 10/37

https://gameoftrees.org/code.html

Git protocol excursion

Git client connection setup during git clone:

Git client logs in via SSH, and runs:

$SHELL -c ’git-upload-pack /git/got.git’

git-upload-pack speaks Git protocol on standard output

Let’s look at an example Git protocol trace, as shown by
“got clone -v”, to see what happens next.

Game of Trees Daemon 11/37

Git protocol excursion

The server sends the first protocol message, listing one of the
available Git branches and supported Git protocol capabilities:

readpkt: 122: c4d35c5bb4f936d0f96bb62d234001b68dc33089 HEAD[0x00] \

agent=got/0.84-current ofs-delta side-band-64k \

symref=HEAD:refs/heads/main[0x0a]

Each Git protocol message is a “packet-line”, a simple length +
data framing scheme (above message length is 122 bytes).

Game of Trees Daemon 12/37

Git protocol excursion

The server sends more messages, listing all available Git branches

readpkt: 57: c4d35c5bb4f936d0f96bb62d234001b68dc33089 \

refs/heads/main[0x0a]

The list is terminated by a “flush-packet” (length zero):

readpkt: 0:

Game of Trees Daemon 13/37

Git protocol excursion

The client sends a similar list of branches it wants:

writepkt: 0061: want c4d35c5bb4f936d0f96bb62d234001b68dc33089 \

agent=got/0.84-current ofs-delta side-band-64k[0x0a]

This list is also terminated by a flush packet:

writepkt: 0000

Game of Trees Daemon 14/37

Git protocol excursion

The client could now send “have” lines listing branch tips it has
stored locally.

But during a fresh clone, the client immediately sends its final
message:

writepkt: 0009: done[0x0a]

Game of Trees Daemon 15/37

Git protocol excursion

The server sends a NAK, indicating no common ancestor commits
were found, as expected during a fresh clone.

readpkt: 4: NAK[0x0a]

Common ancestors found would be indicated by “ACK” messages.
They would allow for reducing the size of the pack file sent next,
and stop the client sending “have” lines.

Game of Trees Daemon 16/37

Git protocol excursion

The server creates a pack file containing objects reachable via the
requested commits, and sends progress output:

server: 5062 commits colored, 28448 objects found, deltify 100%

Game of Trees Daemon 17/37

Git protocol excursion

The client receives the pack file and creates an index for it:

8.9M fetched; indexing 100%; resolving deltas 100%

Fetched 7a5fa8a611c8c665a052f637510bdceaaf7bc38f.pack

The client creates references which point at fetched branch tip
commits, and the repository is ready for use.

Game of Trees Daemon 18/37

Git protocol excursion

The “git push” case:

client receives initial reference list

client proposes reference updates

client sends a pack file

server indexes and verifies pack file

server accepts or denies reference updates

Details:
Documentation/gitprotocol-pack.txt in Git’s source tree

Game of Trees Daemon 19/37

OpenBSD-style multi-process program

Common design patterns in OpenBSD daemons:

ensure system-call domain-separation between processes

e.g. either network, or file access, or forking; Do not mix
use pledge(2) to help guide and enforce this

unveil(2) restricts which files can be seen, read, or written

fork+exec to create processes with unique memory layout

usually starting the same executable again with different
command line flags indicating desired child process behaviour

inter-process communication messages over pipes

pass file-descriptors to make files and network sockets
accessible to processes which cannot open them

Game of Trees Daemon 20/37

gotd – Game of Trees Daemon

Implements a Git server as a multi-process program.

network connections via SSH only

Git user accounts are Unix system shell accounts

special-purpose shell can prevent access to arbitrary
commands2

access permissions are set per repository

2similar to git-shell but more restricted and with less features
Game of Trees Daemon 21/37

/etc/gotd.conf – gotd configuration file

gotd requires a configuration file in order to run:

repository "test" {

path "/var/git/test.git"

permit rw :developers

permit ro anonymous

}

Game of Trees Daemon 22/37

First Working Implementation

parent

repo read repo write

gotsh

unix socket

Git repository

Disk I/O

Game of Trees Daemon 23/37

Current Implementation

parent

session repo read repo write auth

fork+exec per session

Git repository

gotsh

listen

unix socket

Disk I/O

/etc/passwd, /etc/group

Game of Trees Daemon 24/37

gotd – parent process

drop root privileges to user gotd

pledge("stdio proc exec sendfd recvfd")

unveil(argv[0], "x");

parent

Game of Trees Daemon 25/37

gotd – listen process

open unix socket /var/run/gotd.sock

drop root privileges to user gotd

pledge("stdio sendfd unix")

unveil("/", "");

enforce per-UID connection limit

parent

listen

pipe

Game of Trees Daemon 26/37

gotsh – Game of Trees Shell

pledge("stdio recvfd unix")

connect to unix socket

pledge("stdio recvfd")

translate between packet-lines and internal messaging

parent

gotsh

listen

unix socket

Game of Trees Daemon 27/37

gotd – authorization process

parent

auth

fork+exec

gotsh

listen

Game of Trees Daemon 28/37

gotd – authorization process

pledge("stdio getpw recvfd unix")

unveil("/", "")

match repository access rules against user and groups

report authorization result to parent and exit

auth

/etc/passwd, /etc/group

Game of Trees Daemon 29/37

gotd – starting session and repo processes

parent

session

fork+exec

repo read or repo write

gotshlisten

Game of Trees Daemon 30/37

gotd – session process

pledge("stdio rpath wpath cpath sendfd fattr

flock")

unveil(repo path, "rwc"); unveil("/tmp", "rwc")

Git protocol state machine, driven by gotsh

create temporary files needed by repo process

install pack files uploaded by clients and update refs

gotsh

session

repo read or repo write

pipe

Game of Trees Daemon 31/37

gotd – repo read or repo write process

pledge("stdio rpath recvfd")

unveil(repo path, "r")

repo read: create pack and stream it to gotsh

repo write: receive pack from gotsh and create pack index

gotsh

repo read or repo write

pipe session

Git repository

pipe

Game of Trees Daemon 32/37

Pending implementation improvements

verify content of uploaded pack files

parse configuration file just once on startup, not whenever a
new child process starts

split “session” process to avoid write access when not needed

revisit Git protocol state machines in gotsh and “session”:

gotd[74429]: received flush-pkt from uid 1002

last message repeated 386788 times

(above state machine bug has been fixed but there should be more...)

Game of Trees Daemon 33/37

Planned features: “pre-commit” checks

Built-in checks which can be enabled in the configuration file:

enforce a configurable blob size limit

deny branch history rewriting

deny creation/deletion of selected references

hide selected references from clients

deny addition of binary files

deny addition of merge commits

Game of Trees Daemon 34/37

Planned features: commit notifications

commit email notification, plaintext SMTP to localhost

send general-purpose HTTP request as commit notification

with format-string expanding commit info in URL/body
can be used to trigger arbitrary post-commit hook scripts

Game of Trees Daemon 35/37

Other planned features

keep track of available repository disk space and fail gracefully

teach “gotadmin cleanup” to remove redundant pack files

add support for fast-import/fast-export to “gotadmin”

implement Git’s SHA256 object ID support in repository and
network protocol, and enable it by default

server-side rebasing3 to keep linear history without forcing
clients to do trivial rebasing before sending commits

3Not the same as a similarly named planned feature for Git.
Game of Trees Daemon 36/37

Thank you for listening! Got questions?

https://gameoftrees.org

Game of Trees Daemon 37/37

https://gameoftrees.org

