
Fuzzing the OpenBSD Kernel
Part 1/N

Anton Lindqvist <anton@openbsd.org>



Introduction
Fuzzing the OpenBSD kernel using the syzkaller kernel fuzzer.

Heard about first on the BSD Now podcast back in April 2018.

Ongoing effort, hence 1/N in the title.

My ambition is to turn this into a recurring topic for future meetups.

Today, I'll focus on some background and the current state.

https://github.com/google/syzkaller
https://www.bsdnow.tv/episodes/2018_04_18-linux_takes_the_fastpath


syzkaller
Unsupervised, coverage-guided kernel fuzzer.

Published under Google's account on GitHub but not an official Google product
(Apache-2.0 licensed).

Total of 3200 crashes found in Linux, Android, Chrome OS and other internal kernels.



syzkaller overview



Syscall Descriptions
Declarative description of syscalls:

open(file ptr[in, filename], flags flags[open_flags], mode flags[open_mode]) fd

                

225 syscalls supported so far.

Far from exhaustive since every ioctl(2) command needs a separate description:

ioctl$TIOCSETA(fd fd_tty, cmd const[TIOCSETA], arg ptr[in, termios]) 

                

https://man.openbsd.org/ioctl.2


Syscall Programs
Descriptions are used to generate and mutate programs:

r0 = open(&(0x7f0000000000)="./file0", 0x3, 0x9) 

read(r0 , &(0x7f0000000000), 42) 

close(r0) 

                

Novelty arises from the possiblility to test the interaction between different syscalls.

All generated programs are not equally interesting.

Programs are categorized based on the heuristic:

A program is considered interesting if it causes a new code path in the kernel to be
executed.

More on this later...

An interesting program is further mutated in the hope of continued code path
discovery.



syz-prog2c(1)
Generated programs can be turned into C programs:

uint64_t r[1] = {0xffffffffffffffff}; 

 

int main(void) 

{ 

    syscall(SYS_mmap, 0x20000000, 0x1000000, 3, 0x1012, -1, 0); 

    long res = 0; 

    memcpy((void*)0x20000000, "./file0", 8); 

    res = syscall(SYS_open, 0x20000000, 0, 0x10); 

    if (res != -1) 

        r[0] = res; 

    syscall(SYS_read, r[0], 0x20000000, 0); 

    syscall(SYS_close, r[0]); 

    return 0; 

} 

 

                



syzbot
Continous fuzzing of unreleased kernels.

Can even bisect to find the commit that introduces a regression.

OpenBSD is not quite there yet...



kcov(4)
A driver for tracking kernel code coverage.

Enabled on a per thread basis.

The kernel program counter is tracked during syscalls made by the same thread.

Not a strict requirement for syzkaller but improves its ability to generate interesting
programs.



kcov(4) - implementation
Not enabled by default, requires one to compile a custom kernel.

Limited to architectures using Clang due to usage of the 
-fsanitize-coverage=trace-pc option.

Newer versions of GCC does support the same option.

The option will insert calls to a user-supplied function along every line in the original
source code (sort of):
-fno-sanitize-coverage=trace-pc -fsanitize-coverage=trace-pc

int max(int x, int y) { 

    if (x > y) { 

        return x; 

    } 

    return y; 

} 

 

 

                                

int max(int x, int y) { 

    __sanitizer_cov_trace_pc(); 

    if (x > y) { 

        __sanitizer_cov_trace_pc(); 

        return x; 

    } 

    __sanitizer_cov_trace_pc(); 

    return y; 

} 

                                



Found bugs on OpenBSD
poll: execution of address 0x0 caused by console redirection

kqueue: use-after-free in kqueue_close()

unveil: invalid call to VOP_UNLOCK()

open: NULL pointer dereference while operating on cloned device

mprotect: incorrect bounds check in uvm_map_protect()

fchown: NULL pointer dereference while operating on cloned device

recvmsg: double free of mbuf

ftruncate: NULL pointer dereference while operating on cloned device

kqueue: NULL pointer dereference

https://marc.info/?l=openbsd-cvs&m=153552269821957&w=2
https://marc.info/?l=openbsd-cvs&m=153364550327224&w=2
https://marc.info/?l=openbsd-cvs&m=153318491427658&w=2
https://marc.info/?l=openbsd-cvs&m=153297130613157&w=2
https://marc.info/?l=openbsd-cvs&m=153227003430211&w=2
https://marc.info/?l=openbsd-cvs&m=153224108724940&w=2
https://marc.info/?l=openbsd-cvs&m=153067010015474&w=2
https://marc.info/?l=openbsd-cvs&m=153062270701248&w=2
https://marc.info/?l=openbsd-cvs&m=152930020005260&w=2


What about the other BSDs?
FreeBSD supported by syzkaller, kcov(4) under development.

NetBSD supported by syzkaller, kcov(4) under development.

https://reviews.freebsd.org/D14599
https://groups.google.com/forum/#!topic/syzkaller/s3lRe9YDuCA


Want to help out?
Write syscall descriptions (most bang for the buck).

Know Go? Plenty left todo in syzkaller related supporting continous fuzzing.

Enable kcov(4) support for remaining Clang architectures. Not as important but could
be a fun exercise.

https://man.openbsd.org/kcov.4


Thanks!
Martin Pieuchot (OpenBSD) for the help during development of kcov(4).

Visa Hankala (OpenBSD) for reviewing diffs and fixing found panics.

Mark Kettenis (OpenBSD) for reviewing diffs and fixing found panics.

Bob Beck (OpenBSD) for fixing found panics.

Alexander Bluhm (OpenBSD) for reviewing diffs.

Philip Guenther (OpenBSD) for reviewing diffs.

Theo de Raadt (OpenBSD) for reviewing diffs.

Theo Buehler (OpenBSD) for testing panic fixes.

Klemens Nanni (OpenBSD) for testing my syzkaller diffs.

Ingo Schwarze (OpenBSD) for inviting me back in May 2017.

Dmitry Vyukov (syzkaller) for reviewing diffs.

https://man.openbsd.org/kcov.4


Questions?


