Fuzzing the OpenBSD Kernel
Part 1/N

Anton Lindqvist <anton@openbsd.org>

Introduction

Fuzzing the OpenBSD kernel using the syzkaller kernel fuzzer.

Heard about first on the BSD Now podcast back in April 2018.

Ongoing effort, hence 1/N 1n the title.

My ambition is to turn this into a recurring topic for future meetups.

Today, I'll focus on some background and the current state.

https://github.com/google/syzkaller
https://www.bsdnow.tv/episodes/2018_04_18-linux_takes_the_fastpath

syzkaller

e Unsupervised, coverage-guided kernel fuzzer.

e Published under Google's account on GitHub but not an official Google product
(Apache-2.0 licensed).

e Total of 3200 crashes found in Linux, Android, Chrome OS and other internal kernels.

syzkaller overview

sshkey: file

5: url

syz-manager

dir/crashes/crashN-T

dir/corpus/*

* VM management

/ scp, ssh

RPC

SShd mmmr

inputs

ay

syz-fuzzer

k|

syz—-executor

<

coverage info syscalls
/sys/kernel/debug/kcov
Ke rn el vimlinux: file
kernel:

file //

kdir: dir

Syscall Descriptions

e Declarative description of syscalls:

open(file ptr[in, filename], flags flags[open flags], mode flags[open mode]) £

e 225 syscalls supported so far.
e Far from exhaustive since every 1octl(2) command needs a separate description:

1ioctlSTIOCSETA (fd fd tty, cmd const[TIOCSETA], arg ptrlin, termios])

https://man.openbsd.org/ioctl.2

Syscall Programs

e Descriptions are used to generate and mutate programs:

r0 = open (& (0x7£0000000000)="./file0", 0x3, 0x9)
read(r0 , &(0x7£0000000000), 42)
close (r0)

e Novelty arises from the possiblility to test the interaction between different syscalls.
o All generated programs are not equally interesting.
e Programs are categorized based on the heuristic:

A program is considered interesting if it causes a new code path in the kernel to be
executed.

More on this later...

e An interesting program is further mutated in the hope of continued code path
discovery.

syz-prog2c(1)

e Generated programs can be turned into C programs:

uintod4 t r[l] = {OxEffffffffffffffff};

int main (void)
{

syscall (SYS mmap, 0x20000000, Ox1000000, 3, 0x1012, -1, 0);

long res = 0;

memcpy ((void*) 0x20000000, "./fileO", 8);

res = syscall (SYS open, 0x20000000, 0O, Ox10);

if (res != -1)

r[{0] = res;

syscall (SYS read, r[0], 0x20000000, O);
syscall (SYS close, r[0]);
return 0;

syzbot

e Continous fuzzing of unreleased kernels.
e Can even bisect to find the commit that introduces a regression.

e OpenBSD is not quite there yet...

kcov(4)

e A driver for tracking kernel code coverage.
e Enabled on a per thread basis.
e The kernel program counter is tracked during syscalls made by the same thread.

e Not a strict requirement for syzkaller but improves its ability to generate interesting
programs.

kcov(4) - implementation

e Not enabled by default, requires one to compile a custom kernel.

e Limited to architectures using Clang due to usage of the

—fsanitize—coverage=trace—pc(nﬂion.
e Newer versions of GCC does support the same option.

e The option will insert calls to a user-supplied function along every line in the original
source code (sort of):

-fno-sanitize-coverage=trace-pc —-fsanitize-coverage=trace-pc

int max(int x, int y) { int max(int x, int y) {
if (x > y) | __sanitizer cov_trace pc();
return x; 1f (x > y) |

}
return y;
} }
__sanitizer cov_trace pc();
return y;

sanitizer cov_trace pc();
return Xx;

Found bugs on OpenBSD

» poll: execution of address 0x0 caused by console redirection

e kqueue: use-after-free in kqueue_close()

e unveil: invalid call to VOP_UNLOCK()

e open: NULL pointer dereference while operating on cloned device

e mprotect: incorrect bounds check in uvm_map_protect()

o fchown: NULL pointer dereference while operating on cloned device

e recvimsg; double free of mbuf

o ftruncate: NULL pointer dereference while operating on cloned device

e kqueue: NULL pointer dereference

https://marc.info/?l=openbsd-cvs&m=153552269821957&w=2
https://marc.info/?l=openbsd-cvs&m=153364550327224&w=2
https://marc.info/?l=openbsd-cvs&m=153318491427658&w=2
https://marc.info/?l=openbsd-cvs&m=153297130613157&w=2
https://marc.info/?l=openbsd-cvs&m=153227003430211&w=2
https://marc.info/?l=openbsd-cvs&m=153224108724940&w=2
https://marc.info/?l=openbsd-cvs&m=153067010015474&w=2
https://marc.info/?l=openbsd-cvs&m=153062270701248&w=2
https://marc.info/?l=openbsd-cvs&m=152930020005260&w=2

What about the other BSDs?

e FreeBSD supported by syzkaller, kcov(4) under development.
e NetBSD supported by syzkaller, kcov(4) under development.

https://reviews.freebsd.org/D14599
https://groups.google.com/forum/#!topic/syzkaller/s3lRe9YDuCA

Want to help out?

o Write syscall descriptions (most bang for the buck).
e Know Go? Plenty left todo in syzkaller related supporting continous fuzzing.

e Enable kcov(4) support for remaining Clang architectures. Not as important but could
be a fun exercise.

https://man.openbsd.org/kcov.4

Thanks!

e Martin Pieuchot (OpenBSD) for the help during development of kcov(4).
e Visa Hankala (OpenBSD) for reviewing diffs and fixing found panics.
e Mark Kettenis (OpenBSD) for reviewing diffs and fixing found panics.
e Bob Beck (OpenBSD) for fixing found panics.

e Alexander Bluhm (OpenBSD) for reviewing diffs.

e Philip Guenther (OpenBSD) for reviewing diffs.

e Theo de Raadt (OpenBSD) for reviewing diffs.

e Theo Buehler (OpenBSD) for testing panic fixes.

e Klemens Nanni (OpenBSD) for testing my syzkaller diffs.

e Ingo Schwarze (OpenBSD) for inviting me back in May 2017.

e Dmitry Vyukov (syzkaller) for reviewing diffs.

https://man.openbsd.org/kcov.4

Questions?

