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About Myself

● Started hacking on OpenBSD in 2008
– ACPI

– S3 (suspend to RAM)

– S4 (suspend to disk)

– vmm

● Late last year, I started taking a look at 
improving W^X in OpenBSD's kernel …



  

About Myself

● Started hacking on OpenBSD in 2008
– ACPI

– S3 (suspend to RAM)

– S4 (suspend to disk)

– vmm

● Late last year, I started taking a look at 
improving W^X in OpenBSD's kernel …

– It was supposed to be a one month effort...



  

About Myself

● I'm not a “security guy”

● Improving W^X was an effort in improving 
correctness, not security

● Improve correctness, and sometimes you get 
security improvements for free



  

W^X – What Is It?

● W^X is a memory protection policy

– Memory should not be simultaneously writable and 
executable

● How is that policy enforced?

– The OS drives processor hardware enforcement 
features

– Both OS and CPU involved
● Both usermode (eg, processes) and kernel mappings 

can be protected



  

W^X And OpenBSD

● OpenBSD has supported W^X in usermode for 
a long long time

– More than 15 years

● Implemented with page table permissions on 
hardware architectures that support it

–  R/W/X bits or “R/W and NX bit”



  

W^X And OpenBSD

● The i386 platform historically did not have 
hardware “no execute” capability

– Added later, requires PAE paging and a late-
model Pentium 4 or better

● Kernel mode W^X protection in OpenBSD 
came later



  

W^X In The OpenBSD Kernel

● In Oct 2014, I was not a W^X hacker

– Then I casually read this commit:

● I then wondered what other areas were not protected

/sys/arch/amd64/amd64/pmap.c

revision 1.75
date: 2014/10/18 17:28:34; author: kettenis; state: Exp; lines +2/-2;
Make sure the direct map isn't executable on hardware that allows us to do so.
Enforcing W^X in the kernel like this mitigates at least some ret2dir attacks.



  

W^X In The OpenBSD Kernel

● Looking at the protection bits in the kernel, I 
found many areas with incorrect protection

● Slowly, we started fixing things
– amd64 was more or less done by Jan/Feb 2015

– i386 . Ugh.



  

How OpenBSD Manages Memory

● When a process 
issues a malloc / 
mmap call ...

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc



  

How OpenBSD Manages Memory

● When a process 
issues a malloc / 
mmap call ...

● Multiple layers of the 
OpenBSD kernel 
cooperate to manage 
the memory allocated 
to the process

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP



  

How OpenBSD Manages Memory

● The UVM layer is a 
machine independent 
(MI) memory manager

● Handles where 
memory is allocated, 
process memory 
maps, file-backed 
mmaps, etc.

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP



  

How OpenBSD Manages Memory

● The pmap layer is a 
machine dependent 
(MD) module

– Different for each 
architecture

● Manages page tables 
at the hardware level

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP



  

How OpenBSD Manages Memory

● As a memory 
protection policy, W^X 
is enforced at both 
layers in OpenBSD

– UVM won't let you 
ask for W and X

– pmap always 
encodes proper 
permissions 

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP



  

How OpenBSD Manages Memory

● For example, in /sys/uvm/uvm_map.c:

● No fuss, we just panic the machine.



  

Fixing Kernel W^X

● We have all the pieces in place now to enforce 
W^X

– UVM enforcing sane requests

– pmap code to enforce proper page permissions

– Hardware that enforces the permissions

● So all we need to do now is identify all the 
different areas that need different permissions, 
and set everything up



  

Fixing amd64

● Like most OSes, the virtual address (VA) space on 
OpenBSD amd64 is split into various regions



  

Fixing amd64

● Like most OSes, the virtual address (VA) space on 
OpenBSD amd64 is split into various regions

For this talk, I'm focusing 
on this area



  

Fixing amd64

● As earlier shown, the first commit to fix W^X in 
amd64 was the fix for the direct map region

– That only leaves 3 more regions, how hard 
could that be?



  

Fixing amd64

● As earlier shown, the first commit to fix W^X in 
amd64 was the fix for the direct map region

– That only leaves 3 more regions, how hard 
could that be?

– If only it was that easy ...



  

Fixing amd64

● The kernel area itself 
is subdivided

● Can't apply same 
(RW or RX) 
permissions to 
everything



  

Fixing amd64

● Kernel text gets RX



  

Fixing amd64

● Kernel text gets RX
● RO data gets R



  

Fixing amd64

● Kernel text gets RX
● RO data gets R
● Data gets RW



  

Fixing amd64

● Kernel text gets RX
● RO data gets R
● Data gets RW
● Padding at the end 

gets R



  

Fixing amd64

● Before this, everything had X permissions, and 
some of the subdivisions didn't exist

– That means data was RWX!

● Slowly, I fixed all this over the course of several 
months

– Subdivide, apply permissions, repeat



  

Fixing amd64

● I fixed a few other things while I had the hood open

● ACPI resume trampoline

● MP spinup trampoline

– Each trampoline was split into code and data/stack 
pages, with RX / RW perms.

– Previously the trampolines were RWX



  

Fixing amd64

● Page tables
– Page tables are now all NX

● APIC page
– APIC page was executable before, now it isn't

● And of course if we missed something, we'll fix 
it when it becomes known



  

Verifying The Fixes

● How do you know if you did it right?

● A few ways …
– Fix permissions, then intentionally try to break 

them somewhere
● Should panic or die

– Dump all the page permissions and look



  

Verifying The Fixes

● Tools like qemu and bochs can directly inspect 
the page table structure

– In qemu, “info tlb” shows this information

– In bochs, “page” shows this information

● For example:



  

Verifying The Fixes

● Tools like qemu and bochs can directly inspect the 
page table structure

– In qemu, “info tlb” shows this information

– In bochs, “page” shows this information
● For example:

● Permissions here, W = write,

X = no execute



  

Fixing i386

● Someone challenged me over a beer to fix i386 
next

– I should have refused the beer



  

Fixing i386

● The memory map on i386 is similar to amd64
– Smaller

– No direct map

– 3 level page table instead of 4

● Benefits from all of UVM's protections
– Since UVM is machine independent 



  

Fixing i386

● Our i386 pmap was very ancient
– NO support for “NX” bit

● That meant every single page was executable 



  

Fixing i386

● The first effort in fixing i386 was fixing its pmap
– PAE page table

– Has room for NX bit (if the hardware supports it)

● That took several months …
– Existing i386 PAE code was 10+ years old

– Full of bugs



  

Fixing i386

● Legacy machines complicate things
– Some i386 machines don't support PAE

– Some i386 machines don't support NX

● We have to leave the “old” pmap and the “new” 
pmap available, and decide at boot which to 
use



  

Fixing i386

● I flipped the switch to enable PAE on April 24th



  

Fixing i386

● Now that we had a way to enforce our W^X 
policy in hardware, a similar effort was made to 
subdivide and protect the kernel

● Second time (first was amd64) went much 
faster

– But I got distracted by something called vmm ...



  

Fixing i386

● After enough urging by Theo, I spent a few 
days “finishing” i386 and committed the rest in 
August:



  

Finishing i386

● Alas, bug reports soon started appearing
– Weird boot issues

– Hangs

– Reboots

● Unlike amd64, i386 still uses the machine BIOS 
for various things, and it wasn't protected right

– Yuck.



  

Finishing i386

● Unfortunately, we needed to relax some of our 
page permissions in a region called the ISA 
hole

– Sits after 640KB physical memory

– Contains BIOS ROMs and other goo

● On amd64, we map this whole region NX
● On i386, it needs X permissions



  

Current Status

● amd64 is complete from what I can tell

– Userland / kernel W^X

– If someone finds a wrong mapping, I'd love to know 
about that

● I386 is mostly complete

– Userland / kernel W^X
● Left in old “line in the sand” mode for now

– A few lingering BIOS bugs

– Trampolines need to be split



  

Wrapping Up

● This was supposed to be a 1 month effort
– “How hard could it possibly be?”

● I viewed it as a correctness fix, not a security fix

● After all the pages had proper W^X 
permissions, how many violators did we find in 
OpenBSD code on amd64?



  

Wrapping Up

● This was supposed to be a 1 month effort
– “How hard could it possibly be?”

● I viewed it as a correctness fix, not a security fix

● After all the pages had proper W^X 
permissions, how many violators did we find in 
OpenBSD code on amd64?

– ZERO.



  

Wrapping Up

● Keep in mind...
– Nothing is a silver bullet

– It's a cost analysis, and the cost is really low on 
this one.



  

Thanks For Listening

● Thanks Hackfest!

● Any questions?

● I'm mlarkin@openbsd.org if you have questions 
later

mailto:mlarkin@openbsd.org
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