

Kernel W^X Improvements In OpenBSD

Hackfest 2015

Mike Larkin
mlarkin@openbsd.org

@mlarkin2012

mailto:mlarkin@openbsd.org

About Myself

● Started hacking on OpenBSD in 2008
– ACPI

– S3 (suspend to RAM)

– S4 (suspend to disk)

– vmm

● Late last year, I started taking a look at
improving W^X in OpenBSD's kernel …

About Myself

● Started hacking on OpenBSD in 2008
– ACPI

– S3 (suspend to RAM)

– S4 (suspend to disk)

– vmm

● Late last year, I started taking a look at
improving W^X in OpenBSD's kernel …

– It was supposed to be a one month effort...

About Myself

● I'm not a “security guy”

● Improving W^X was an effort in improving
correctness, not security

● Improve correctness, and sometimes you get
security improvements for free

W^X – What Is It?

● W^X is a memory protection policy

– Memory should not be simultaneously writable and
executable

● How is that policy enforced?

– The OS drives processor hardware enforcement
features

– Both OS and CPU involved
● Both usermode (eg, processes) and kernel mappings

can be protected

W^X And OpenBSD

● OpenBSD has supported W^X in usermode for
a long long time

– More than 15 years

● Implemented with page table permissions on
hardware architectures that support it

– R/W/X bits or “R/W and NX bit”

W^X And OpenBSD

● The i386 platform historically did not have
hardware “no execute” capability

– Added later, requires PAE paging and a late-
model Pentium 4 or better

● Kernel mode W^X protection in OpenBSD
came later

W^X In The OpenBSD Kernel

● In Oct 2014, I was not a W^X hacker

– Then I casually read this commit:

● I then wondered what other areas were not protected

/sys/arch/amd64/amd64/pmap.c

revision 1.75
date: 2014/10/18 17:28:34; author: kettenis; state: Exp; lines +2/-2;
Make sure the direct map isn't executable on hardware that allows us to do so.
Enforcing W^X in the kernel like this mitigates at least some ret2dir attacks.

W^X In The OpenBSD Kernel

● Looking at the protection bits in the kernel, I
found many areas with incorrect protection

● Slowly, we started fixing things
– amd64 was more or less done by Jan/Feb 2015

– i386 . Ugh.

How OpenBSD Manages Memory

● When a process
issues a malloc /
mmap call ...

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

How OpenBSD Manages Memory

● When a process
issues a malloc /
mmap call ...

● Multiple layers of the
OpenBSD kernel
cooperate to manage
the memory allocated
to the process

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP

How OpenBSD Manages Memory

● The UVM layer is a
machine independent
(MI) memory manager

● Handles where
memory is allocated,
process memory
maps, file-backed
mmaps, etc.

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP

How OpenBSD Manages Memory

● The pmap layer is a
machine dependent
(MD) module

– Different for each
architecture

● Manages page tables
at the hardware level

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP

How OpenBSD Manages Memory

● As a memory
protection policy, W^X
is enforced at both
layers in OpenBSD

– UVM won't let you
ask for W and X

– pmap always
encodes proper
permissions

ProcessProcess

OpenBSD Kernel

mmap, malloc, etc

UVM

PMAP

How OpenBSD Manages Memory

● For example, in /sys/uvm/uvm_map.c:

● No fuss, we just panic the machine.

Fixing Kernel W^X

● We have all the pieces in place now to enforce
W^X

– UVM enforcing sane requests

– pmap code to enforce proper page permissions

– Hardware that enforces the permissions

● So all we need to do now is identify all the
different areas that need different permissions,
and set everything up

Fixing amd64

● Like most OSes, the virtual address (VA) space on
OpenBSD amd64 is split into various regions

Fixing amd64

● Like most OSes, the virtual address (VA) space on
OpenBSD amd64 is split into various regions

For this talk, I'm focusing
on this area

Fixing amd64

● As earlier shown, the first commit to fix W^X in
amd64 was the fix for the direct map region

– That only leaves 3 more regions, how hard
could that be?

Fixing amd64

● As earlier shown, the first commit to fix W^X in
amd64 was the fix for the direct map region

– That only leaves 3 more regions, how hard
could that be?

– If only it was that easy ...

Fixing amd64

● The kernel area itself
is subdivided

● Can't apply same
(RW or RX)
permissions to
everything

Fixing amd64

● Kernel text gets RX

Fixing amd64

● Kernel text gets RX
● RO data gets R

Fixing amd64

● Kernel text gets RX
● RO data gets R
● Data gets RW

Fixing amd64

● Kernel text gets RX
● RO data gets R
● Data gets RW
● Padding at the end

gets R

Fixing amd64

● Before this, everything had X permissions, and
some of the subdivisions didn't exist

– That means data was RWX!

● Slowly, I fixed all this over the course of several
months

– Subdivide, apply permissions, repeat

Fixing amd64

● I fixed a few other things while I had the hood open

● ACPI resume trampoline

● MP spinup trampoline

– Each trampoline was split into code and data/stack
pages, with RX / RW perms.

– Previously the trampolines were RWX

Fixing amd64

● Page tables
– Page tables are now all NX

● APIC page
– APIC page was executable before, now it isn't

● And of course if we missed something, we'll fix
it when it becomes known

Verifying The Fixes

● How do you know if you did it right?

● A few ways …
– Fix permissions, then intentionally try to break

them somewhere
● Should panic or die

– Dump all the page permissions and look

Verifying The Fixes

● Tools like qemu and bochs can directly inspect
the page table structure

– In qemu, “info tlb” shows this information

– In bochs, “page” shows this information

● For example:

Verifying The Fixes

● Tools like qemu and bochs can directly inspect the
page table structure

– In qemu, “info tlb” shows this information

– In bochs, “page” shows this information
● For example:

● Permissions here, W = write,

X = no execute

Fixing i386

● Someone challenged me over a beer to fix i386
next

– I should have refused the beer

Fixing i386

● The memory map on i386 is similar to amd64
– Smaller

– No direct map

– 3 level page table instead of 4

● Benefits from all of UVM's protections
– Since UVM is machine independent

Fixing i386

● Our i386 pmap was very ancient
– NO support for “NX” bit

● That meant every single page was executable

Fixing i386

● The first effort in fixing i386 was fixing its pmap
– PAE page table

– Has room for NX bit (if the hardware supports it)

● That took several months …
– Existing i386 PAE code was 10+ years old

– Full of bugs

Fixing i386

● Legacy machines complicate things
– Some i386 machines don't support PAE

– Some i386 machines don't support NX

● We have to leave the “old” pmap and the “new”
pmap available, and decide at boot which to
use

Fixing i386

● I flipped the switch to enable PAE on April 24th

Fixing i386

● Now that we had a way to enforce our W^X
policy in hardware, a similar effort was made to
subdivide and protect the kernel

● Second time (first was amd64) went much
faster

– But I got distracted by something called vmm ...

Fixing i386

● After enough urging by Theo, I spent a few
days “finishing” i386 and committed the rest in
August:

Finishing i386

● Alas, bug reports soon started appearing
– Weird boot issues

– Hangs

– Reboots

● Unlike amd64, i386 still uses the machine BIOS
for various things, and it wasn't protected right

– Yuck.

Finishing i386

● Unfortunately, we needed to relax some of our
page permissions in a region called the ISA
hole

– Sits after 640KB physical memory

– Contains BIOS ROMs and other goo

● On amd64, we map this whole region NX
● On i386, it needs X permissions

Current Status

● amd64 is complete from what I can tell

– Userland / kernel W^X

– If someone finds a wrong mapping, I'd love to know
about that

● I386 is mostly complete

– Userland / kernel W^X
● Left in old “line in the sand” mode for now

– A few lingering BIOS bugs

– Trampolines need to be split

Wrapping Up

● This was supposed to be a 1 month effort
– “How hard could it possibly be?”

● I viewed it as a correctness fix, not a security fix

● After all the pages had proper W^X
permissions, how many violators did we find in
OpenBSD code on amd64?

Wrapping Up

● This was supposed to be a 1 month effort
– “How hard could it possibly be?”

● I viewed it as a correctness fix, not a security fix

● After all the pages had proper W^X
permissions, how many violators did we find in
OpenBSD code on amd64?

– ZERO.

Wrapping Up

● Keep in mind...
– Nothing is a silver bullet

– It's a cost analysis, and the cost is really low on
this one.

Thanks For Listening

● Thanks Hackfest!

● Any questions?

● I'm mlarkin@openbsd.org if you have questions
later

mailto:mlarkin@openbsd.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

