
firewalling with
OpenBSD's pf and pfsync
David Gwynne <dlg@openbsd.org>

Thursday, 17 January 13

introduction

‣ who am i?

‣ what is openbsd?

‣ what are pf and pfsync?

‣ how do i use them?

‣ ask questions whenever you want

Thursday, 17 January 13

who am i?

‣ infrastructure architect in EAIT at UQ

‣ i do stuff, including run the firewalls

‣ a core developer in openbsd

‣ i generally play with storage

‣ but i play with the network stack sometimes

Thursday, 17 January 13

what is openbsd?
‣ open source general purpose unix-like

operating system

‣ descended from the original UNIX by way of
berkeley and netbsd

‣ aims for “portability, standardization,
correctness, proactive security and integrated
cryptography.”

‣ supports various architectures/platforms

Thursday, 17 January 13

what is openbsd?
‣ one source tree for everything

‣ kernel, userland, doco

‣ bsd/isc/mit style licenses on all code (with
some historical exceptions)

‣ 6 month dev cycle resulting in a release

‣ 3rd party software via a ports tree

‣ emergent focus on network services

Thursday, 17 January 13

what is openbsd?
‣ it is very aggressive

‣ changes up and down the stack (compiler
to kernel) to make a harsher, stricter, and
less predictable runtime environment

‣ minimal or no backward compatibility as
things move forward

‣ whole tree is checked for new bugs

‣ randomise as much as possible all over

Thursday, 17 January 13

what is openbsd?
‣ it is extremely conservative

‣ tree must compile and work at all times

‣ big changes go in at the start of the cycle

‣ we’re not afraid to back stuff out

‣ peer review is necessary

‣ we do back away from some tweaks for the
sake of usability

Thursday, 17 January 13

what is pf?
‣ short for packet filter

‣ the successor to IP Filter (ipf)

‣ ipf was removed due to license issues

‣ the exec summary is that it is a stateful filter
for IP (v4 and v6) traffic

‣ does a little bit more than that though...

‣ enabled by default

Thursday, 17 January 13

stateful filtering
‣ the firewall tracks connections through it

‣ src+dst ip, proto, ports, etc

‣ red-black tree used for lookups (O(log n))

‣ pf states track tcp windows and such

‣ each state takes memory, so there is a limit

‣ packets without a state fall through to ruleset
evaluation

Thursday, 17 January 13

pf rules

‣ basically a list of things to match on

‣ eg, v4/v6, src+dst ip, protocol, ports,
interface, direction, tcp flags, socket owner
+group, icmp type, probability, and more...

‣ and what to do

‣ pass/block/match, nat/rdr, divert, custom
routing, tag, label, short circuit, and more...

Thursday, 17 January 13

pf rules

‣ last match wins (quick can short circuit)

‣ implicit keep state (but optional)

‣ packets matching states get passed, so
rules only have to allow the first packet

‣ ruleset loads are atomic and do not disturb
existing states

Thursday, 17 January 13

pf in the stack

‣ sits between the traditional network stack
(socket layer and forwarding) and interfaces

‣ pf is run twice for forwarded packets, once
coming into the stack and again going out

‣ lots of hooks into other parts of the stack
though, and links to itself and other bits

Thursday, 17 January 13

pf in practice

‣ pfctl(8) and pf.conf(5) for controlling pf
pfctl -d disable pf
pfctl -e enable pf
pfctl -si show info
pfctl -ss show states
pfctl -sr show rules
pfctl -nf /etc/pf.conf parse rules
pfctl -f /etc/pf.conf parse and load rules
systat pf watch -si type stats tick over

Thursday, 17 January 13

pf in practice: nat at home

‣ net is on pppoe0, internal is on em0

‣ sysctl net.inet.ip.forwarding=1
block
pass on em0
pass out quick on pppoe0 from (pppoe0)
pass out on pppoe0 from em0:network \
 nat-to (pppoe0)

Thursday, 17 January 13

pf in practice: anti-DoS

block
pass in on em0 from $mgmt_net to port ssh
pass in on em0 to port www \
 keep state (max-src-states 80 \
 tcp.closed 5) \
 synproxy state

Thursday, 17 January 13

pf in practice: remote site
‣ net: pppoe0, internal: em0, vpn: gif0
block
pass on em0
pass in on gif0
pass out on gif0 to $central_net \
 received-on em0
block out quick on pppoe0 to $central_net
pass out quick on pppoe0 from (pppoe0)
pass out on pppoe0 from em0:network \
 nat-to (pppoe0:0)

Thursday, 17 January 13

pf in practice: lots of nets
‣ net: trunk0, internal: vlan0-60, dmz: vlan100

‣ internal interfaces are in the “staff” ifgroup

block

antispoof for { vlan0 vlan1 ... vlan60 }
block drop in on ! vlanX \
from vlanX:network to any...

Thursday, 17 January 13

pf in practice: lots of nets

pass in on trunk0
pass out on trunk0 received-on staff

pass out on vlan100 proto tcp \
 to $web port { 80 443 }
pass out on vlan100 proto tcp \
 to $files port { 139 445 } \
 received-on staff

Thursday, 17 January 13

pf in practice: ftp

/usr/sbin/ftp-proxy

anchor "ftp-proxy/*"
pass in quick proto tcp to port ftp \
 rdr-to 127.0.0.1 port 8021
pass out quick user proxy

Thursday, 17 January 13

pf.conf

‣ there are a lot of other useful config bits

‣ tables: radix trees instead of single ips

‣ macros: foo=192.168.1.1; pass from $foo

‣ lists: pass to $foo port { 80 443 }

‣ ruleset optimiser and skip steps

Thursday, 17 January 13

failover

‣ one day your box will fail

‣ so buy two!

‣ but your ruleset only allows connections to
start, not continue

‣ or you write really bad rulesets

‣ you need the states on the spare box for
failover to work

Thursday, 17 January 13

what is pfsync?
‣ pfsync was invented to sync states between

pf firewalls over the network

‣ does not concern itself with active/passive
roles or directing failover, all peers are equal

‣ as states change in pf, pfsync is told and
builds packets it transmits to peers

‣ pfsync merges updates from packets into the
local state tree

Thursday, 17 January 13

what is pfsync?

‣ initial versions were rudimentary

‣ now does ipsec tdb sync for gateway failover

‣ plans to sync other flows (ppp things?)

‣ big rewrite two years ago to allow active-
active to work plus free code speedups

Thursday, 17 January 13

pfsync in action

‣ to use you just create the pfsync0 interface

‣ it is an interface so there’s something to
manage, not as a transport for packets

‣ and tell it which network interface to use to tx
and rx packets

‣ make sure pf allows pfsync packets too...

‣ it is your job to keep the rulesets in sync

Thursday, 17 January 13

pfsync in action: carp(4)

‣ generally use carp(4) to prioritise firewalls

‣ Common Address Redundancy Protocol

‣ lets hosts share IPs on Ethernet interfaces

‣ carp master gets the packets until it fails or
the backup assumes higher priority

‣ can use ifstated(8) to failover other
interfaces based on carp on other nets

Thursday, 17 January 13

pfsync in action

ifconfig pfsync0 create
ifconfig pfsync0 syncdev bnx0

ifconfig pfsync0 maxupd 128
ifconfig pfsync0 defer

ifconfig -g carp carpdemote 10
ifconfig -g carp -carpdemote 10

Thursday, 17 January 13

pfsync in action
$ ifconfig pfsync0
pfsync0: flags=41<UP,RUNNING> mtu 1500
 priority: 0
 pfsync: syncdev: bnx0 maxupd: 128 defer: on
 groups: carp pfsync
$ ifconfig carp381
carp381: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:00:5e:00:01:51
 description: staff servers
 priority: 0
 carp: MASTER carpdev vlan381 vhid 81 advbase 1 advskew 192
 groups: carp
 status: master
 inet6 fe80::200:5eff:fe00:151%carp381 prefixlen 64 scopeid 0x73
 inet 130.102.76.62 netmask 0xffffffc0 broadcast 130.102.76.63
$ ifconfig -g carp
carp: carp demote count 10

Thursday, 17 January 13

pfsync at home
‣ two firewalls at home could (should?) be

considered overkill

‣ but pfsync gives you a serialised representation
of a pf state which you can now put on disk...

‣ so you can patch kernels without losing irc
on shutdown:
/sbin/pfctl -S /etc/pf.states
on boot:
/sbin/pfctl -L /etc/pf.states

Thursday, 17 January 13

pfsync at work

‣ static ips and a single default route

‣ two firewalls with pfsync between them

‣ carp(4) on inside and outside

‣ graceful failover via ifconfig carpdemote

‣ when the master fails the backup firewalls
carp interfaces come up and get the traffic

Thursday, 17 January 13

pfsync at my work
‣ 3 physical interfaces

‣ 10G + 1G in failover trunk

‣ 1G dedicated to pfsync traffic

‣ 60ish internal networks on separate vlans

‣ carp interfaces on vlans on trunk

‣ 2 external links

‣ vlans on trunk with ospf

Thursday, 17 January 13

Open Shortest Path First
‣ openbsd has its own routing daemons

‣ ospfd, ospf6d, bgpd, ripd, ldpd...

‣ ospfd advertises routes on up interfaces

‣ carp is up when master, down when backup

‣ carp changes move route advertisements

‣ ospf provides upstream failure detection

‣ ospf can demote carp if upstreams are gone

Thursday, 17 January 13

ospfd.conf
area 0.0.0.2 {
 demote carp 10

 interface vlan363 {
 auth-type crypt
 auth-md 1 Ust4ReJ59dnAVogG
 auth-md-keyid 1
 }
 interface vlan364 {
 auth-type crypt
 auth-md 1 r5Sy6ubyyHZaiMDB
 auth-md-keyid 1
 }
 interface carp70 { passive }
 interface carp72 { passive }
}

Thursday, 17 January 13

ospfd

‣ passive interfaces are members of the area, but
don’t talk ospf

‣ ospf default dead time is 30sec with 10sec
hello intervals, ie, ~35sec failovers

‣ we have a hack for ~1sec failovers
 router-dead-time minimal
 fast-hello-interval msec 250

Thursday, 17 January 13

pfsync at my work

"ss"

ss0 ss1pfsync

carpX
vlanX

carp801
vlan801

carp865
vlan865

carp866
vlan866

upstream1

ospf
vlan363

upstream2

ospf
vlan364

Thursday, 17 January 13

pfsync caveats
‣ connections terminating on a firewall cannot

be usefully synced because the socket and
app state isn’t transported

‣ sucks for proxies (eg, ftp-proxy)

‣ high speed connections over two peers are
limited because of the pfsync mitigation

‣ still some newer pf features that aren’t
represented in the pfsync messages

Thursday, 17 January 13

pf and pfsync and ...

‣ this is just how we (and others) use it

‣ there are a lot more tools and ways to mix them

‣ bgp, relayd (load balancing/dsr), mpls, vrf,
vpn

Thursday, 17 January 13

questions?

‣ ask away

‣ http://www.openbsd.org/

Thursday, 17 January 13

