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introduction

‣ who am i?

‣ what is openbsd?

‣ what are pf and pfsync?

‣ how do i use them?

‣ ask questions whenever you want
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who am i?

‣ infrastructure architect in EAIT at UQ

‣ i do stuff, including run the firewalls

‣ a core developer in openbsd

‣ i generally play with storage

‣ but i play with the network stack sometimes
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what is openbsd?
‣ open source general purpose unix-like 

operating system

‣ descended from the original UNIX by way of 
berkeley and netbsd

‣ aims for “portability, standardization, 
correctness, proactive security and integrated 
cryptography.”

‣ supports various architectures/platforms
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what is openbsd?
‣ one source tree for everything

‣ kernel, userland, doco

‣ bsd/isc/mit style licenses on all code (with 
some historical exceptions)

‣ 6 month dev cycle resulting in a release

‣ 3rd party software via a ports tree

‣ emergent focus on network services
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what is openbsd?
‣ it is very aggressive

‣ changes up and down the stack (compiler 
to kernel) to make a harsher, stricter, and 
less predictable runtime environment

‣ minimal or no backward compatibility as 
things move forward

‣ whole tree is checked for new bugs

‣ randomise as much as possible all over
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what is openbsd?
‣ it is extremely conservative

‣ tree must compile and work at all times

‣ big changes go in at the start of the cycle

‣ we’re not afraid to back stuff out

‣ peer review is necessary

‣ we do back away from some tweaks for the 
sake of usability
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what is pf?
‣ short for packet filter

‣ the successor to IP Filter (ipf)

‣ ipf was removed due to license issues

‣ the exec summary is that it is a stateful filter 
for IP (v4 and v6) traffic

‣ does a little bit more than that though...

‣ enabled by default
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stateful filtering
‣ the firewall tracks connections through it

‣ src+dst ip, proto, ports, etc

‣ red-black tree used for lookups (O(log n))

‣ pf states track tcp windows and such

‣ each state takes memory, so there is a limit

‣ packets without a state fall through to ruleset 
evaluation
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pf rules

‣ basically a list of things to match on

‣ eg, v4/v6, src+dst ip, protocol, ports, 
interface, direction, tcp flags, socket owner
+group, icmp type, probability, and more...

‣ and what to do

‣ pass/block/match, nat/rdr, divert, custom 
routing, tag, label, short circuit, and more...

Thursday, 17 January 13



pf rules

‣ last match wins (quick can short circuit)

‣ implicit keep state (but optional)

‣ packets matching states get passed, so 
rules only have to allow the first packet

‣ ruleset loads are atomic and do not disturb 
existing states
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pf in the stack

‣ sits between the traditional network stack 
(socket layer and forwarding) and interfaces

‣ pf is run twice for forwarded packets, once 
coming into the stack and again going out

‣ lots of hooks into other parts of the stack 
though, and links to itself and other bits

Thursday, 17 January 13



pf in practice

‣ pfctl(8) and pf.conf(5) for controlling pf
pfctl -d disable pf
pfctl -e enable pf
pfctl -si show info
pfctl -ss show states
pfctl -sr show rules
pfctl -nf /etc/pf.conf parse rules
pfctl -f /etc/pf.conf parse and load rules
systat pf watch -si type stats tick over
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pf in practice: nat at home

‣ net is on pppoe0, internal is on em0

‣ sysctl net.inet.ip.forwarding=1
block
pass on em0
pass out quick on pppoe0 from (pppoe0)
pass out on pppoe0 from em0:network \
    nat-to (pppoe0)
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pf in practice: anti-DoS

block
pass in on em0 from $mgmt_net to port ssh
pass in on em0 to port www \
  keep state (max-src-states 80 \
  tcp.closed 5) \
  synproxy state
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pf in practice: remote site
‣ net: pppoe0, internal: em0, vpn: gif0
block
pass on em0
pass in on gif0
pass out on gif0 to $central_net \
  received-on em0
block out quick on pppoe0 to $central_net
pass out quick on pppoe0 from (pppoe0)
pass out on pppoe0 from em0:network \
  nat-to (pppoe0:0)
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pf in practice: lots of nets
‣ net: trunk0, internal: vlan0-60, dmz: vlan100

‣ internal interfaces are in the “staff” ifgroup

block

antispoof for { vlan0 vlan1 ... vlan60 }
# block drop in on ! vlanX \
#   from vlanX:network to any...
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pf in practice: lots of nets

pass in on trunk0
pass out on trunk0 received-on staff

pass out on vlan100 proto tcp \
  to $web port { 80 443 }
pass out on vlan100 proto tcp \
  to $files port { 139 445 } \
  received-on staff
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pf in practice: ftp

# /usr/sbin/ftp-proxy

anchor "ftp-proxy/*"
pass in quick proto tcp to port ftp \
  rdr-to 127.0.0.1 port 8021
pass out quick user proxy
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pf.conf

‣ there are a lot of other useful config bits

‣ tables: radix trees instead of single ips

‣ macros: foo=192.168.1.1; pass from $foo

‣ lists: pass to $foo port { 80 443 }

‣ ruleset optimiser and skip steps
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failover

‣ one day your box will fail

‣ so buy two!

‣ but your ruleset only allows connections to 
start, not continue

‣ or you write really bad rulesets

‣ you need the states on the spare box for 
failover to work
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what is pfsync?
‣ pfsync was invented to sync states between 

pf firewalls over the network

‣ does not concern itself with active/passive 
roles or directing failover, all peers are equal

‣ as states change in pf, pfsync is told and 
builds packets it transmits to peers

‣ pfsync merges updates from packets into the 
local state tree
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what is pfsync?

‣ initial versions were rudimentary

‣ now does ipsec tdb sync for gateway failover

‣ plans to sync other flows (ppp things?)

‣ big rewrite two years ago to allow active-
active to work plus free code speedups
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pfsync in action

‣ to use you just create the pfsync0 interface

‣ it is an interface so there’s something to 
manage, not as a transport for packets

‣ and tell it which network interface to use to tx 
and rx packets

‣ make sure pf allows pfsync packets too...

‣ it is your job to keep the rulesets in sync
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pfsync in action: carp(4)

‣ generally use carp(4) to prioritise firewalls

‣ Common Address Redundancy Protocol

‣ lets hosts share IPs on Ethernet interfaces

‣ carp master gets the packets until it fails or 
the backup assumes higher priority

‣ can use ifstated(8) to failover other 
interfaces based on carp on other nets
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pfsync in action

# ifconfig pfsync0 create
# ifconfig pfsync0 syncdev bnx0

# ifconfig pfsync0 maxupd 128
# ifconfig pfsync0 defer

# ifconfig -g carp carpdemote 10
# ifconfig -g carp -carpdemote 10
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pfsync in action
$ ifconfig pfsync0
pfsync0: flags=41<UP,RUNNING> mtu 1500
        priority: 0
        pfsync: syncdev: bnx0 maxupd: 128 defer: on
        groups: carp pfsync
$ ifconfig carp381 
carp381: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
        lladdr 00:00:5e:00:01:51
        description: staff servers
        priority: 0
        carp: MASTER carpdev vlan381 vhid 81 advbase 1 advskew 192
        groups: carp
        status: master
        inet6 fe80::200:5eff:fe00:151%carp381 prefixlen 64 scopeid 0x73
        inet 130.102.76.62 netmask 0xffffffc0 broadcast 130.102.76.63
$ ifconfig -g carp                                                                                                                                                                                                                                                      
carp: carp demote count 10
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pfsync at home
‣ two firewalls at home could (should?) be 

considered overkill

‣ but pfsync gives you a serialised representation 
of a pf state which you can now put on disk...

‣ so you can patch kernels without losing irc
on shutdown:
# /sbin/pfctl -S /etc/pf.states
on boot:
# /sbin/pfctl -L /etc/pf.states
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pfsync at work

‣ static ips and a single default route

‣ two firewalls with pfsync between them

‣ carp(4) on inside and outside

‣ graceful failover via ifconfig carpdemote

‣ when the master fails the backup firewalls 
carp interfaces come up and get the traffic
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pfsync at my work
‣ 3 physical interfaces

‣ 10G + 1G in failover trunk

‣ 1G dedicated to pfsync traffic

‣ 60ish internal networks on separate vlans

‣ carp interfaces on vlans on trunk

‣ 2 external links

‣ vlans on trunk with ospf
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Open Shortest Path First
‣ openbsd has its own routing daemons

‣ ospfd, ospf6d, bgpd, ripd, ldpd...

‣ ospfd advertises routes on up interfaces

‣ carp is up when master, down when backup

‣ carp changes move route advertisements

‣ ospf provides upstream failure detection

‣ ospf can demote carp if upstreams are gone
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ospfd.conf
area 0.0.0.2 {
        demote carp 10

        interface vlan363 {
                auth-type crypt
                auth-md 1 Ust4ReJ59dnAVogG
                auth-md-keyid 1
        }
        interface vlan364 {
                auth-type crypt
                auth-md 1 r5Sy6ubyyHZaiMDB
                auth-md-keyid 1
        }
        interface carp70 { passive }
        interface carp72 { passive }
}
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ospfd

‣ passive interfaces are members of the area, but 
don’t talk ospf

‣ ospf default dead time is 30sec with 10sec 
hello intervals, ie, ~35sec failovers

‣ we have a hack for ~1sec failovers
        router-dead-time minimal
        fast-hello-interval msec 250
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pfsync at my work

"ss"

ss0 ss1pfsync

carpX
vlanX

carp801
vlan801

carp865
vlan865

carp866
vlan866

upstream1

ospf
vlan363

upstream2

ospf
vlan364
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pfsync caveats
‣ connections terminating on a firewall cannot 

be usefully synced because the socket and 
app state isn’t transported

‣ sucks for proxies (eg, ftp-proxy)

‣ high speed connections over two peers are 
limited because of the pfsync mitigation

‣ still some newer pf features that aren’t 
represented in the pfsync messages
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pf and pfsync and ...

‣ this is just how we (and others) use it

‣ there are a lot more tools and ways to mix them

‣ bgp, relayd (load balancing/dsr), mpls, vrf, 
vpn
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questions?

‣ ask away

‣ http://www.openbsd.org/
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