
Anders Magnusson

Bringing PCC into
The 21th century

October 11, 2008

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

About PCC

  Written in the mid-late-70’s by S.C. Johnson as a
portable and retargetable C compiler.

  Based on theory from the Richie PDP-11 C compiler and
Andy Snyder’s 1975 master thesis on portable C
compilers

  Was the reference implementation of C compilers and
was ported to almost any existing architecture.

  Was the system C compiler on almost all Unix systems
(on some still are!)

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

What have I done?

  Write a preprocessor that supports C99
features.

  Add the C99 features to the C compiler
parser step (frontend).

  Rewrite the code generator (backend)
almost entirely to be able to do
optimizations.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Why?

  Needed a C compiler for PDP10 to be able to
port NetBSD to it.

  Wanted a better C compiler than the Richie
C compiler for PDP11.

  PCC was just released freely by Caldera.

  Have a slight interest in compilers.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Layout of a C compiler

cc

cpp c0 c1 c2 as ld

cpp – The C PreProcessor

c0 – Parser and tree builder

c1 – Code generator

c2 – peephole optimizer

as – assembler

ld – linkage loader

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

PCC is small and simple

  The compiler consists of 30 files.
  The total size of the machine-independent

part of the compiler is 15000 lines of code,
9000 in the C language parser and 6000 in
the code generator.

  The machine-dependent part is 3000 lines,
where 1000 is the C-specific code and 2000
is for the code generator.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

C Parser step overview

  Handles all initializations and data segment
allocations

  Does syntax checking of the compiled code,
prototype checks and casts

  Builds parse trees, inserts casts, converts array
references to register offset arithmetic

  Converts language-specific operators (comma
operator, lazy evaluation) to non-C-specific code

  Keep track of the symbol table and the different
name spaces

  Generates debugging information

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

C Parser machine-independent files

-rw-r--r-- 1 ragge wheel 31746 Sep 5 19:07 cgram.y
-rw-r--r-- 1 ragge wheel 3169 Oct 4 2004 gcc_compat.c

-rw-r--r-- 1 ragge wheel 17603 Apr 2 2005 init.c
-rw-r--r-- 1 ragge wheel 4133 May 19 22:52 inline.c
-rw-r--r-- 1 ragge wheel 7870 Sep 5 19:07 main.c

-rw-r--r-- 1 ragge wheel 7622 May 19 22:52 optim.c
-rw-r--r-- 1 ragge wheel 9701 Sep 5 19:07 pass1.h

-rw-r--r-- 1 ragge wheel 46282 Sep 5 19:07 pftn.c
-rw-r--r-- 1 ragge wheel 10216 Dec 11 2004 scan.l
-rw-r--r-- 1 ragge wheel 8956 May 21 10:31 stabs.c

-rw-r--r-- 1 ragge wheel 8371 Oct 3 2004 symtabs.c

-rw-r--r-- 1 ragge wheel 47022 Sep 5 19:07 trees.c

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Parser step MD code

  30 machine-dependent functions for the C
parser, most of them can be copied.

  Function clocal() is called after each tree
node is added to be able to do fast rewrite
of trees.

  Only two files are cpu-specific
-rw-r--r-- 1 ragge wheel 11487 Oct 3 18:08 local.c
-rw-r--r-- 1 ragge wheel 5016 Sep 5 19:07 code.c

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Internal tree structure

  The compiler builds binary trees in the
parser step

  These trees follows through the compiler

T2 T1

=

T0 +

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Internal tree structures

  A node always have at least two properties
  op – the operation the node is supposed to

perform (PLUS, REG, ASSIGN, …)
  type – the underlying (C) type of the operand (int,

float, char *, …)
  Nodes are of three sorts

  BITYPE – binary, node with two legs
  UTYPE – unary, left is a leg
  LTYPE – leaf, no legs

  A specific node op is always one of the
above.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Nodes

  BITYPEs
  PLUS, MINUS, DIV, MOD, MUL, AND, OR, ER,
LS, RS, INCR, DECR, EQ, NE, LE, LT, GE,
GT, ULE, ULT, UGE, UGT, CBRANCH, CALL,
FORTCALL, STCALL, ASSIGN, STASG

  UTYPEs
  COMPL, UMUL, UMINUS, FLD, SCONV, PCONV,
PMCONV, PVCONV, UCALL, UFORTCALL,
USTCALL, STARG, FORCE, GOTO, FUNARG,
ADDROF

  LTYPEs
  NAME, ICON, FCON, REG, OREG, TEMP

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

UTYPEs
  UMUL

  Take value pointed to by expression
  FLD

  Use only some bits in expression
  SCONV, PCONV

  Convert expression value to scalar/pointer
  PMCONV, PVCONV

  Multiply/divide expression for array reference
  STARG, FUNARG

  (Structure) argument to function
  ADDROF

  Take address of expression
  FORCE

  Value should be put into return register

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

LTYPEs
  NAME

  Reference to the data stored at an address in memory.
  ICON, FCON

  A constant of some type. May be an address in memory.
  REG

  A hardware register on the target machine.
  OREG

  An offset from a register to a memory position, like the
stack or in a structure.

  TEMP
  A temporary variable generated by pass1 that is later

converted to either a REG or an OREG.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

The ‘NODE’
  The NODE typedef is the basic structure used through the compiler

in both the parser and the code generator

 typedef struct node {
 int n_op;
 int n_rall;
 TWORD n_type;
 int n_su;
 union {
 char * _name;
 int _stsize;
 union dimfun *_df;
 } n_5;
 union {
 int _label;
 int _stalign;
 struct suedef *_sue;
 } n_6;
 union {
 struct {
 union {
 struct node *_left;
 CONSZ _lval;
 } n_l;
 union {
 struct node *_right;
 int _rval;
 struct symtab *_sp;
 } n_r;
 } n_u;
 long double _dcon;
 } n_f;
} NODE;

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Code generator steps

  There are four basic functions in the code
generation pass, called in order (sort of)
  geninsn()

  Finds instructions that covers as much as possible of the
expression tree; ``maximal munch’’

  sucomp()
  Does Sethi-Ullman computation to find best sub-tree

evaluation order
  genregs()

  Uses graph-coloring to do register assignment
  gencode()

  Emits the instructions and removes redundant code

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction selection

  The basic principle of the compiler is
something like ”get a value into a register,
work on it, and then write it back”. Matches
RISC targets very well.

  Instruction selection is the first step in code
generation.

  Assigning instructions is done by matching
the trees top-down to find an instruction
that covers the largest part of the tree.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction selection #2

  If several instructions matches, the best
instruction is selected based on some
heuristics (other needs etc), or just the
position in the table.

  To be kind to CISC targets with funny
addressing modes, special target-dependent
functions can be written to match indirect
references:
  shumul() finds out if a shape matches
  offstar() sets the subtree into a usable state
  myormake() will do the actual subtree conv.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Sethi-Ullman calculations
  Sethi-Ullman calculations is a way to find

out how many registers needed to evaluate
a parse tree on a simple architecture.

  It is usually used to see if a subtree must be
stored to be able to evaluate a full tree.

  In PCC Sethi-Ullman is only used to find out
in which order subtrees should be
evaluated.

  Numbering of in-tree temporaries is done
here.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Register assignment

  The current register allocator uses graph-
coloring based on the George and Appel
pseudocode from their ACM paper.

  Extensions to handle multiple register
classes are added, with some ideas from a
Smith, Holloway and Ramsey ACM paper but
in a better and simpler way :-)

  If register allocation fails, geninsn() and
sucomp() may have to be called again.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction emitting

  Emitting of instruction is done bottom-up in
the order found by sucomp(). Tree rewriting
is used.

  Redundant code from the register allocation
phase (reg-reg moves) are removed here
(unless condition codes is needed)

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Optimizations

  When optimizing is enabled, the C language
parser will count all variables as temporaries
and let the register allocator try to put them
in registers.

  Redundant jumps (to next insn) are deleted.
  The trees are divided in basic blocks and a

control-flow graph is built.
  The trees are converted in SSA form (not yet

finished).

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Code generator files

  Machine-independent
-rw-r--r-- 1 ragge wheel 12587 Sep 5 19:07 common.c
-rw-r--r-- 1 ragge wheel 8837 Sep 17 09:58 manifest.h
-rw-r--r-- 1 ragge wheel 19438 Oct 6 19:56 match.c

-rw-r--r-- 1 ragge wheel 4133 Sep 12 09:02 mkext.c
-rw-r--r-- 1 ragge wheel 4016 Feb 5 2005 node.h

-rw-r--r-- 1 ragge wheel 20153 Sep 17 09:58 optim2.c
-rw-r--r-- 1 ragge wheel 10270 Oct 6 19:57 pass2.h
-rw-r--r-- 1 ragge wheel 25770 Sep 17 09:58 reader.c

-rw-r--r-- 1 ragge wheel 36859 Oct 6 22:50 regs.c

  CPU-specific
-rw-r--r-- 1 ragge wheel 18825 Sep 8 21:19 local2.c

-rw-r--r-- 1 ragge wheel 7847 Sep 17 09:58 order.c
-rw-r--r-- 1 ragge wheel 24420 Oct 6 22:50 table.c

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Code-generator CPU-specific code

  About 30 functions in total
  18 functions are related to instruction

emission.
  The table which is an array of optab entries

which each describes an instruction.
  The offstar()/ormake() functions are among

the most difficult to write. They searches
for situations where indexing of instructions
can be used.

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction table

  The table is an array of entries that is the basis for
instruction selection.

{ PLUS, INAREG|FOREFF,
 SAREG, TINT|TUNSIGNED,
 SAREG|SNAME|SOREG, TINT|TUNSIGNED,
 0, RLEFT,
 " addl AR,AL\n", },

{ OPSIMP, INAREG,
 SAREG, TCHAR|TUCHAR,
 SCON, TANY,
 0, RLEFT,
 " Ob CR,AL\n", },

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Instruction table
  Macro ops in table

  Z - special machine dependent operations
  F - this line deleted if FOREFF is active
  S - field size
  H - field shift
  M - field mask
  N - complement of field mask
  L - output special label field
  O - opcode string
  B - byte offset in word
  C - for constant value only
  I - in instruction
  A - address of
  U - for upper half of address, only

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Future directions

  f77 frontend;
  The original f77 compiler that were targeted

towards the Johnson and Richie compilers were
quite simple to get running.

  C++ frontend;
  Despite what people say I think it won't be so

difficult to write one :-)

  as, ld, ...
  Original code exists, just spend some time...

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Nice books and papers

  A tour through the portable C compiler
  S. C. Johnson 1978

  Iterated Register Coalescing
  ACM paper, Appel & George 1996

  Compilers: Principles, Techniques, and Tools
  ”Dragon book”, Ravhi, Sethi, Ullman, ...

  Modern compiler implementation in C/Java
  Appel, ...

Anders Magnusson
<ragge@ltu.se>

Mars 11, 2008

Related stuff

  The pcc web site; http://pcc.ludd.ltu.se
  Mailing lists;

  pcc-list@ludd.ltu.se
  pcc-commit-list@ludd.ltu.se

Funding? Yes please! :-)

