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Abstract

Cryptographic transformations are a fundamental build-
ing block in many security applications and protocols.
To improve performance, several vendors market hard-
ware accelerator cards. However, until now no operating
system provided a mechanism that allowed both uniform
and efficient use of this new type of resource.

We present the OpenBSD Cryptographic Framework
(OCF), a service virtualization layer implemented in-
side the kernel, that provides uniform access to accel-
erator functionality by hiding card-specific details be-
hind a carefully-designed API. We evaluate the impact
of the OCF in a variety of benchmarks, measuring over-
all system performance, application throughput and la-
tency, and aggregate throughput when multiple applica-
tions make use of it.

We conclude that the OCF is extremely efficient in uti-
lizing cryptographic accelerator functionality, attaining
95% of the theoretical peak device performance, and
over 800 Mbit/sec aggregate throughput using 3DES.
We believe that this validates our decision to opt for ease
of use by applications and kernel components through a
uniform API, and for seamless support for new accel-
erators. Furthermore, our evaluation points to several
bottlenecks in system and operating system design: data
copying between user and kernel modes, PCI bus signal-
ing inefficiency, protocols that use small data units, and
single-threaded applications. We offer several sugges-
tions for improvements and directions for future work.

1 Introduction

Today’s computing systems are used for applications
such as electronic commerce, tele-collaboration of vari-
ous types, and evolving peer-to-peer systems, often con-
taining sensitive information. Security in these sys-
tems depends on several mechanisms that utilize crypto-
graphic primitives as a basic building block. Such cryp-
tographic primitives can be very complex [2] because

the design of these systems is intended to impede sim-
ple, brute-force, computational attacks. This complexity
drives the belief that strong security is fundamentally in-
imical to good performance.

This belief has led to the common predilection to avoid
cryptography in favor of performance [22]. However,
the foundation for this belief is often software imple-
mentation [8] of algorithms intended for efficient hard-
ware implementation. To address this issue, vendors
have been marketing hardware cryptographic acceler-
ators that implement several cryptographic algorithms
used by security protocols and applications. However,
modern operating systems lack the necessary support
to provide efficient access to such functionality to ap-
plications and the operating system itself through a
uniform API that abstracts away device details. As
a result, accelerators are often used directly through
libraries linked with applications, typically requiring
device-specific knowledge by the applications, and pre-
venting the operating system itself from easily utilizing
such hardware.

We present the OpenBSD Cryptographic Framework
(OCF), a service virtualization layer implemented inside
the kernel, that provides uniform access to accelerator
functionality by hiding device-specific details behind a
carefully-designed API. The abstraction introduced al-
lows us to easily support new hardware accelerators and
enable applications to use any such accelerator without
device-specific knowledge. Furthermore, this intermedi-
ate layer does not unduly impact performance, as is com-
mon when such abstractions are introduced. The OCF
has been in use with OpenBSD [5] for over three years
and has proven stable and efficient in practice. It offers
features such as load-balancing across multiple acceler-
ators, session migration, and algorithm chaining. We
describe the changes we made to the OpenBSD kernel
and applications to take advantage of the OCF. In pre-
vious work [18] we presented a preliminary analysis of
the impact of hardware acceleration on network security
protocols, without describing the OCF itself in any de-
tail. Here, we evaluate the impact of the OCF in a variety
of micro-benchmarks, measuring overall system perfor-



mance, application throughput and latency, and aggre-
gate throughput when multiple applications use the OCF.

Our evaluation shows that, despite its addition in the sys-
tem as a device/service virtualization layer, the OCF is
extremely efficient in utilizing cryptographic accelera-
tor functionality, attaining 95% of the theoretical peak
device performance. In another configuration, we were
able to achieve a 3DES aggregate throughput of over
800 Mbps, by employing a multi-threaded application
and load-balancing across multiple accelerators. Fur-
thermore, use of hardware accelerators can remove con-
tention for the CPU and thus improve overall system re-
sponsiveness and performance for unrelated tasks. Our
evaluation allowed us to determine that the limiting fac-
tor for high-performance cryptography in modern sys-
tems is data copying and the PCI bus. Furthermore,
small data-buffers should be processed in software if
possible, freeing hardware accelerators to handle larger
requests that better amortize the system and PCI trans-
action costs. On the other hand, multi-threading results
in increased utilization of the OCF, improving aggregate
throughput. We make recommendations for future direc-
tions in architectural placement of cryptographic func-
tionality, operating system provisions, and application
design, and discuss several improvements and promis-
ing directions for future work.

The framework has been in use with IPsec since
OpenBSD 2.8, although it continues to evolve in re-
sponse to new requirements. Public-key support and the
/dev/crypto interface were introduced in a later version.
The OCF has also been ported to FreeBSD and NetBSD,
and we are working on Windows and Linux versions.

Paper Organization Section 2 discusses related work.
Section 3 describes the OCF’s design and implementa-
tion, while Section 4 discusses its use by various sub-
systems and applications. In Section 5, we evaluate
the framework’s performance, and discuss some of the
results and potential improvements and future work in
Section 6. Section 7 concludes the paper.

2 Redated Work

As interest in security is currently in an upswing, recent
work has been examining the overall performance im-
pact of security technologies in real systems. Work by
Coarfa, et al. [4] has focused on the impact of hard-
ware accelerators in the context of TLS web servers
using a trace-based methodology, and concludes that
there is some opportunity for acceleration, but given the

choice one might prefer a second processor as it also
assists with the substantial (and perhaps dominant) non-
cryptographic overheads. [18] provides some basic per-
formance characterizations of IPsec as well as other net-
work security protocols, and the impact acceleration has
on throughput. The authors conclude that the relative
cost of high-grade cryptography is low enough that it
should be the default configuration.

There has been a considerable amount of work on the
enhancement of system performance through the addi-
tion of cryptographic hardware [2]. This early work was
characterized by its focus on the hardware accelerator
rather than its implications for overall system perfor-
mance. [24] began examining cryptographic subsystem
issues in the context of securing high-speed networks,
and observed that the bus-attached cards would be lim-
ited by bus-sharing with a network adapter on systems
with a single 1/O bus. A second issue pointed out in that
time frame [20] was the cost of system calls, and a third
[21, 23, 7, 11] the cost of buffer copying. These issues
are still with us, and continue to require aggressive de-
sign to reduce their impacts.

[25] describes an API to cryptographic functions, the
main purpose of which is to separate cryptographic li-
braries from applications, thus allowing independent de-
velopment. Our service API is similar at a high level,
although several differences were dictated by the need
to support actual hardware accelerators and allow it to
be used efficiently by protocols such as IPsec and SSL,
as we discuss in Section 3. Other work includes the Mi-
crosoft CryptoAPI [17], GSS-API [16] and IDUP-GSS-
API [1], PKCS #11 [14], SSAPI [26], and the CDSA
[19]. These are primarily intended for use by applica-
tions that also require authentication, authorization, key
management and other higher level security services.
Our work focuses on low-level cryptographic opera-
tions, providing a simple abstraction layer that does not
significantly impact performance, compared to a device-
specific approach.

[10] describes an open-source cryptographic coproces-
sor, focusing on protecting keys and other sensitive in-
formation from tampering by unauthorized applications.
The author extends the cryptlib library to communicate
with the co-processor. While he discusses several op-
tions for hardware acceleration and identifies some po-
tential performance bottlenecks, it is mostly a quali-
tative analysis. That work is extended in [9], which
presents a comprehensive cryptographic security archi-
tecture, again focusing primarily on preserving the con-
fidentiality of users’ (and applications’) cryptographic
keys. We are interested in a much simpler problem:
how to accelerate cryptographic operations in a general-



purpose operating system using hardware available in
the market and with minimal modifications to the ker-
nel, libraries, and applications.

NetBSD uses the dmover facility, which provides an in-
terface to hardware-assisted data movers. This can be
used to copy data from one location in memory to an-
other, clear a region of memory, fill a region of memory
with a pattern, and perform simple operations on multi-
ple regions of memory, such as XOR, without interven-
tion by the CPU.

3 TheCryptographic Framework

The OpenBSD cryptographic framework (OCF) is
an asynchronous service virtualization
layer inside the kernel, that provides uniform access
to hardware cryptographic accelerator cards. The OCF
implements two APIs for use by other kernel subsys-
tems, one for use by consumers (other kernel subsys-
tems) and another for use by producers (crypto-card de-
vice drivers). The OCF supports two classes of algo-
rithms: symmetric (e.g., DES, AES, MD5) and asym-
metric (e.g., RSA).

Symmetric-algorithm (e.g., DES, AES, MD5, compres-
sion algorithms, etc.) operations are built around the
concept of the session, since such algorithms are typi-
cally used for bulk-data processing, and we wanted to
take advantage of the session-caching features available
in many accelerators. Asymmetric algorithms are im-
plemented as individual operations: no session caching
is performed. Session creation and teardown are syn-
chronous operations.

The producer API allows a driver to register with the
OCF the various algorithms it supports and any other
device characteristics (e.g., support for algorithm chain-
ing, built-in random number generation, etc.). The de-
vice driver also registers four callback functions that the
OCF uses to initialize, use, and teardown symmetric-
algorithm sessions, and to issue asymmetric-algorithm
requests. The drivers can also selectively de-register al-
gorithms, or remove themselves from the OCF (e.g., a
PCMCIA card that is ejected). Any sessions using the
defunct driver (or algorithm) are migrated to other cards
on-demand (i.e., as the next request for that session ar-
rives). Registration and de-registration can occur at any
time; typical device drivers do so at system initialization
time. Drivers call the crypto_done() and crypto_kdone()
routines to notify the OCF of completed symmetric and
asymmetric requests, respectively. A brief description of
the APl is given in Appendix A.

In addition to any hardware drivers, a software-crypto
pseudo-driver registers a number of symmetric-key al-
gorithms when the system boots. The pseudo-driver acts
as a last-resort provider of crypto services; any suitable
hardware accelerator will be treated preferably. How-
ever, the kernel does not implement asymmetric algo-
rithms in software, for performance reasons; we shall
see in Section 4.2 how we handle these. Using a generic
API for crypto drivers allows us to easily add support
for new cards. We briefly discuss these drivers in Sec-
tion 3.1.

To use the OCF, consumers first create a session with
the OCF using crypto_newsession(), specifying the algo-
rithm(s) to use, mode of operation (e.g., CBC, HMAC,
etc.), cryptographic keys, initialization vectors, and
number of rounds (for variable-round algorithms). The
OCF supports algorithm-chaining, i.e., performing en-
cryption and integrity-protection in one operation. Such
combined operations are used by practically all data-
transfer security protocols. At session-creation time, the
OCF determines which card to use based on its capa-
bilities and creates a session by calling its newsession
method, provided at device-registration time. When the
session is not needed, crypto_freesession() frees any al-
located resources.

For the actual encryption/decryption, consumers use
crypto_dispatch(). The arguments to this include the data
to be processed, a copy of the parameters used to initial-
ize the session, consumer-provided opaque data, and a
callback function. The data can be provided in the form
of mbufs (linked lists of data buffers, used by the net-
work subsystem to store packets) or as a collection of
potentially non-contiguous memory blocks, called uio.
The case of a single contiguous data buffer is handled as
a uio. Although mbufs are also a special case of uio, we
added special support to allow for some processing op-
timizations when using software cryptography. Further-
more, the issuer of a request can specify whether encryp-
tion should be done in-place, or the encrypted data must
be returned on a separate buffer. Various offsets indicate
where to start and end the encryption, where to place the
message authentication code (MAC), and where to find
the initialization vector (if already present on the buffer)
or where to write it on the output buffer.

The request is queued and crypto_dispatch() immedi-
ately returns to the consumer. The crypto kernel thread
is periodically invoked by the scheduler and dispatches
all pending requests to the appropriate producers. It also
handles all completed requests, by calling the specified
callback functions. It then returns to sleep, waiting for
more requests. As a result of the OpenBSD kernel archi-
tecture (common in most non-SMP kernels), the thread



is not preemptable by user processes, although hardware
interrupts are still handled. Currently, the thread must
operate at a high priority to avoid synchronization prob-
lems. When using the software pseudo-driver, this can
cause significant latency in application scheduling and in
low-priority kernel operations, although the same prob-
lem manifested before the migration to OCF, when en-
cryption was done in-band with IPsec packet processing.

Once the request is processed, the crypto thread calls
the consumer-supplied callback routine. If an error
has occurred, the callback is responsible for any cor-
rective action. Session migration is implemented by
re-creating the session using the initial parameters to
crypto_newsession(), which accompany all requests as
we already mentioned. The error EAGAIN is indicated
to the callback routine, which re-issues the request af-
ter recording the new session number to be used so that
subsequent requests are correctly routed. Including the
initialization data in each request also allows us to easily
integrate cards that do not support the concept of ses-
sion: the driver simply passes all necessary information
(data, algorithm descriptions, and keys) to the card with
each request. The opaque data are simply passed back
to the consumer unmodified by the OCF; they are used
to maintain any additional information for the consumer
that is relevant to the request. We shall see an example
in Section 4.1.

Asymmetric operations are handled similarly, albeit
without support for the concept of session. The parame-
ters in this case include an array of parameters, contain-
ing the algorithm-specific big-integers.

When multiple producers implement the same algo-
rithms, the OCF can load-balance sessions across them.
This is currently implemented by simply keeping track
of the number of sessions active on each producer.
At session setup, the OCF picks the producer with
the smallest number of active sessions. The software
pseudo-driver is currently never used in load-balancing.
We evaluate the effectiveness of this simple scheme in
Section 5.4. We discuss possible future improvements
in Section 6.4.

3.1 DeviceDrivers

The drivers for the various crypto devices must be able
to cope with a wide variety of hardware design decisions
(and bugs) made by the manufacturers. These drivers
register the algorithms supported by the device and ex-
port the appropriate callback functions to the OCF.

The hifn driver supports the Hifn 7751, 7811, and 7951
chips and contains around 3,000 lines of code and def-

initions. The driver supports the symmetric operations
and hashes available on all these chips. Additionally,
it supports the random-number generators available on
the 7811 and 7951, but does not support the public key
unit on the 7951; the latter was clearly designed for SSL
server implementations, as it requires a large amount of
CPU-intensive initialization which can be precomputed
and used repeatedly on a server but not a client. All
these chips support copying-through header and trailer
data to the destination buffer, and include full support for
scatter-gather 1/0. Unfortunately, there is no easy way to
coalesce interrupts on this chip, which generates one in-
terrupt per operation, resulting in considerable system
overhead. Another important detail is that all of the
Hifn symmetric crypto chips poll their descriptor rings
in main memory for data to process.

The nofn driver supports the Hifn 7814, 7851, and 7854
chips (also known as HIPP1 packet processors). Cur-
rently, there is no support for the symmetric unit on these
chips. Fitting these into the current framework is not
currently done because they are designed to replace al-
most all of the IPsec processing (IV generation, MAC
checking, replay window handling, etc.). In the future,
we intend to add support for the IPsec unit by adding a
combined-class algorithm and checking for this in IPsec.
On the other hand, the public-key unit is almost exactly
the same as the Hifn 6500 described below.

The lofn driver supports the Hifn 6500 chip, which con-
tains a public-key unit and a random-number generator.
This chip is essentially a simple big-number arithmetic
logic unit (i.e., it is an ALU capable of performing op-
erations on 1024-bit registers). Unlike all of the other
chips, the 6500 is not a bus-master (i.e., has no sup-
port for DMA); instead, registers exist within its PCI
memory-mapped address space. Because of the expense
of modular exponentiations, the somewhat higher over-
head of writes to these I/O addresses is still small com-
pared to doing the exponentiation in software.

The ubsec driver, which supports the Broadcom 5801,
5802, 5805, 5820, 5821, and 5822 chips, consists of
slightly less than 3,000 lines of code and definitions. The
symmetric-crypto units on all of the chips are very sim-
ilar, but the 580x series and 582x series require differ-
ent formatting for the big numbers on the asymmetric
unit. These chips support interrupt coalescing by chain-
ing several commands together, and scatter-gather 1/O.
Unlike Hifn, these chips do not poll main memory.

We have a variety of other device drivers in various
stages of completion. We are aware of other and more
modern products from a variety of vendors, but many of
them are hesitant to give us the information we need.



4 Useof the OCF in OpenBSD

In this section, we discuss how we extended parts of
OpenBSD to make use of the OCF services.

41 |Psec

The IP Security Architecture [12], as specified by the
Internet Engineering Task Force (IETF), is comprised of
a set of protocols that provide data integrity, confiden-
tiality, replay protection, and authentication at the net-
work layer. At the lowest level of the IPsec architec-
ture reside the data encryption/authentication protocols,
AH and ESP. These are the “wire protocols,” used for
encapsulating the IP packets to be protected. They sim-
ply provide a format for the encapsulation; the details
of the bit layout are not particularly important for the
purposes of this paper. Outgoing packets are authen-
ticated, encrypted, and encapsulated just before being
transmitted, and incoming packets are decapsulated, ver-
ified, and decrypted immediately upon receipt. These
protocols are typically implemented inside the kernel,
for performance and security reasons.

IPsec was the first consumer of the OCF services. The
original implementation of the OpenBSD IPsec was de-
scribed in [13]. Here, we give a brief overview and then
describe the modifications we had to make to it to allow
use of the OCF.

In the OpenBSD kernel, IPsec is implemented as a
pair of protocols sitting on top of IP. Thus, incoming
IPsec packets destined to the local host are processed
by the appropriate IPsec protocol through the proto-
col switch structure used for all protocols (e.g., TCP
and UDP). The selection of the appropriate protocol is
based on the protocol number in the IP header. The SA
needed to process the packet is found in an in-kernel
database using information retrieved from the packet it-
self. Once the packet has been correctly processed (de-
crypted, integrity-validated, etc.), it is re-queued for fur-
ther processing by the IP module, accompanied by addi-
tional information (such as the fact that it was received
under a specific SA) for use by higher-level protocols
and the socket layer.

Outgoing packets require somewhat different process-
ing. When a packet is handed to the IP module for trans-
mission (in i p_out put () ), a lookup is made in the
Security Policy Database (SPD) to determine whether
that packet needs to be processed by IPsec. The deci-
sion is made based on the source/destination addresses,
transport protocol, and port numbers. If IPsec process-
ing is needed, the lookup will also specify what type of

SA(s) to use for IPsec processing of the packet. If no
suitable SA exists, the key-management daemon is noti-
fied to acquire one. Otherwise, the packet is processed
by IPsec and passed to i p_out put () again for trans-
mission. The packet also carries an indication as to what
IPsec processing has already occurred to it, to avoid pro-
cessing loops.

In the original IPsec implementation, all cryptographic
operations were done in-band with packet processing.
This meant that a lot of time was spent performing
symmetric-key encryption in the kernel. To make use of
the OCF, we split the input and output processing paths.
For example, let us consider the case where ip_output()
determines (by consulting the SPD) that a packet must
be IPsec-protected. It then calls ipsp_process_packet(),
which handles all IPsec outbound-packet processing.
After handling encapsulation issues, this routine calls
the appropriate “wire protocol” output routine. In the
ESP protocol processing, the original esp_output() rou-
tine was broken up in esp_output() and esp_output_ch().
esp_output() does all the data marshaling and ESP
header manipulation, constructs a crypto request, passes
it to the OCF and simply returns. Execution returns to
ip_output() with an indication that the operation was suc-
cessful.

Once the OCF processes the request, it calls
esp_output_ch(), a pointer to which is included in
the request itself. The callback routine completes the
ESP protocol processing by checking for any errors
in the crypto processing (re-queuing the request if
the OCF indicated so), and calls ipsp_process_done(),
the second part of the original ipsp_process_packet()
routine. This routine completes IPsec book-keeping,
and calls ip_output() with the new packet. ip_output()
will then perform a new SPD lookup (making sure no
IPsec loops occur, by examining the list of SAs that have
been already applied to the packet). If necessary, the
output processing cycle will occur again. Eventually,
ip_output() will pass the packet to a network driver for
actual transmission.

The cases for output AH and IPcomp process-
ing are similar. Input processing is also similar:
ipsec_common_input() is called by the network scheduler
for all IPsec packets received. It locates the appropri-
ate SA in the kernel SA database and calls esp_input().
Similar to the output case, esp_input() validates the ESP
header fields, constructs a crypto request, passes it to
the OCF and returns. Once the request is processed,
the OCF will call esp_input_ch(), which will verify the
packet integrity (by comparing the value on the packet
with that computed by the accelerator), remove the ESP
header, and pass the packet to ipsec_common_input_ch().



This routine performs further sanity and security checks
on the decrypted packet, and re-queues it for further pro-
cessing by the IP layer. AH and IPcomp input processing
is similar, as is the case of IPsec over IPv6.

Input ESP and AH processing offer one example of use
of the opaque data passed with each crypto request, dis-
cussed in Section 3. All the cryptographic accelerators
that support message authentication (MAC) algorithms
only offer a “forward-compute” mode. That is, the card
can only compute the MAC on the packet, and it is up
to the operating system to verify its validity by compar-
ing it with the received value. Thus, we use the opaque
data to store the MAC value from the packet and instruct
the OCF to write the new MAC value in the appropri-
ate location in the packet — the operation is exactly the
same as the output case. In the callbacks, we simply do
a byte-wise comparison of the computed value (stored
on the packet) and the received value (stored as opaque
data in the request itself).

While the code was not very complicated, there were
several minor headaches as a result of this asynchronous
processing model. For example, one problem was com-
municating MTU information through arbitrarily-many
IPsec SAs to the TCP layer, so as to correctly fragment
application data and avoid fragmentation at the IP layer.
We could not simply update the appropriate data struc-
tures with the correct MTU value after the packet had
been encapsulated once, since we could not “peek” in-
side the encryption. Fortunately, we keep a record of
which SAs have been applied to a packet during input
and output processing. Thus, on receipt of the appropri-
ate ICMP message, or when the IP layer indicates that
the packet is too large to be transmitted without frag-
mentation, the list of SAs is traversed and each SA is up-
dated with the correct MTU value based on its position
in the SA chain (i.e., the first SA on output will advertise
asmaller MTU than the last one, the difference being the
ESP headers and encryption padding). The next packet
that tries to traverse the chain will encounter a correct
MTU value.

4.2 [dev/crypto

Building on our experience with the IPsec implemen-
tation, we turn our attention to exporting the OCF ser-
vices to user-level applications. A / dev/ crypt o de-
vice driver exists which abstracts all the OCF function-
ality and provides a command set that can be used by
OpenSSL (or other software that uses / dev/ crypt o
directly). This interface is based on ioctl() calls and is
thus fully synchronous (i.e., applications can only have
one request pending) — in the future, we intend to al-

low processes to issue multiple requests. Both symmet-
ric and asymmetric operations are permitted using this
framework; we will first describe the symmetric compo-
nent.

Similar to the underlying OCF, this uses a session-based
model, since the general case assumes that keys will
be reused for a sequence of operations. After opening
the / dev/ cr ypt o device and gaining a file descrip-
tor f d, the caller requests that a new session be created
with Cl OCGSESSI ON for a certain cryptographic op-
eration, and specifies all related parameters (e.g., keys).
Similar to the OCF, a single session supports both a ci-
pher and a MAC, as we are simply exporting the same
functionality available to the kernel. Cl OCGSESSI ON
returns a session identifier that can then be reused re-
peatedly for subsequent operations. When the session
is no longer needed, it can be revoked using Cl OCF-
SESSI ON. Many sessions can be requested against a
single file descriptor fd; all sessions follow a particular
fd through fork() and exec() calls, and are not otherwise
visible to other processes. Obviously, the last close() on
fd destroys all the sessions.

If the request cannot be satisfied using hardware accel-
erators, the kernel will return an error of El NVAL, so
the caller can fall back to a software implementation.
We considered adding an ioctl() that describes the abili-
ties of the available hardware, allowing an application to
determine if the needed algorithm is supported by look-
ing at a list. However, numerous other variables exist
(key sizes, block sizes, alignment) which might be dif-
ficult to describe. For the time being, we have punted
on this issue. However, when first called, the OpenSSL
engine will enumerate all OCF-supported algorithms. It
does so by issuing a Cl OCGSESSI ON request for each
algorithm it supports in software, and caches the result.
If an algorithm is not provided by the OCF, the library
will use its software implementation (in reality, the ker-
nel will admit that it supports cryptographic algorithms
that it implements in software, and OpenSSL will make
use of them as if they were implemented by hardware,
unless a sysctl variable is set to prohibit this, which is
the default setting).

Once a session is established, blocks can be encrypted
or decrypted using the CI OCCRYPT ioctl(). Each time
this is used, the caller can specify a new IV or MAC
information that they wish to fold into the operation. In-
put and output buffers are specified via separate pointers,
but they can point to the same buffer for in-place encryp-
tion. Naturally, the data size provided by the caller must
be rounded to the default block size of the algorithm be-
ing used. A data size limit of 262,140 bytes exists at the
moment, to hide a similar limit found in some chipsets.



In the future, we may support larger blocks by splitting
operations into smaller chunks.

The user-land data blocks are copied into memory al-
located inside the kernel address space. This data is
formatted into uio blocks as mentioned in Section 3.
The OCF is then called to perform the operation using
the initialization information stored in the application’s
/ dev/ crypt o session. If the operation is successful,
the results are copied back to the application buffers.
Obviously, the cost of these two copies is higher for
larger block sizes, as we shall see in Section 5.4. In the
future, we hope to use page flipping for larger blocks
when the kernel memory subsystem supports this.

For asymmetric operations, no session is required. The
Cl OCKEY ioctl() is used in an atomic fashion for each
individual operation. Five operations are provided,
with CRK_LMOD_EXP being the most important. Support
for the others, CRK_MOD_EXP_CRT, CRK_DSA_SI GN,
CRK_DSA_VERI FY, and CRK_DH.COMPUTE_KEY has
not yet been completed. Each of these has an operation-
specific number of input and output parameters, which
are always a packed byte array of big integers. The par-
ticular format we chose for these parameters makes it
easy to interface to OpenSSL “bignums,” and to most of
the early hardware we had access to.

Presently, OpenBSD lacks cloning devices. Therefore
a cumbersome procedure for opening / dev/ crypt o
must be followed. After the initial open() call, the
caller must use ioctl() to retrieve a file descriptor (fd)
to use, then perform all operations against this replace-
ment fd. This replacement fd is a unique per-process
descriptor, while the initially-opened one would natu-
rally be shared between all callers. Without such se-
mantics, the fork() and _exit() system calls do not exhibit
the expected semantics with respect to file-descriptor in-
heritance and closing. Just as bad, we would end up
with all processes able to see and use each other’s keys.
When cloning devices are implemented in OpenBSD,
we will change the user-level code (mostly OpenSSL)
to no longer use this complicated procedure, but the ker-
nel will retain it for backward compatibility. While writ-
ing this code, we ran into numerous strange and difficult
resource-management issues for session teardown.

It should also be noted that applications using
/ dev/ crypt o must ensure they use ioctl() with the
F_SETFD command on the crypto descriptor to ensure
that the “close-on-exec” flag is set. Otherwise, child pro-
cesses will inherit unwanted descriptors, which is both a
security and a resource-exhaustion concern.

4.2.1 OpenSSL Enhancements

In the past, programmers using OpenSSL (or its prede-
cessor, SSLeay) directly called the generic crypto rou-
tines as they existed for each algorithm. More recently,
programmers have been encouraged to use the EVP layer
for dealing with symmetric algorithms. This provides
a session-based model much like the / dev/ crypt o
layer described in the previous section. Applications like
OpenSSH, mod_ssl (the Apache SSL module we use),
and sendmail have matured to use these interfaces.

Newer OpenSSL code-bases contain an “engine” com-
ponent. This allows asymmetric algorithms to be di-
rected to a hardware driver; a number of stub func-
tions are provided which typically interface with vendor-
specific shared libraries to actually do the operation on
the vendor’s accelerator. Many of these subsystems in-
teract badly and do not consider the effects of chroot()
or other strange Unix behaviors, resulting in weak secu-
rity models. Since we run Apache in a chroot()’ed envi-
ronment in which there exists no /dev/crypto device, we
modified it to perform all necessary initializations prior
to being sandboxed. We wrote our own engine mod-
ules that interacts directly with /dev/crypto, without any
of these surprises. Symmetric operations from the EVP
layer are directly mapped into OCF requests. One ma-
jor weakness is that the EVP layer has no concept of
bundling algorithms. Thus, protocols that use encryption
and MAC on a message, such as TLS and SSH version
2, sequentially issue two separate requests to /dev/crypto
through the EVP layer, resulting in unnecessary context
switches, data copying, and DMA transactions. Thus,
the EVP layer currently does not pass MAC operations
to the OCF.

5 Performance Evaluation

In this section, we analyze the performance of the cryp-
tographic framework. \We have ran a series of micro-
benchmarks that allowed us to determine the limits of
the framework and potential directions for improvement.
We use the OCF for simple cryptographic tasks, com-
paring different cryptographic accelerators with the case
of pure-software encryption, and provide a cost break-
down. We also attempt to quantify the benefits to be had
by the system at large, when off-loading cryptographic
operations to hardware accelerators. Finally, we eval-
uate the load-balancing feature of OCF, by simultane-
ously using multiple accelerators on the same machine.



51 Testbed

For our tests, we use two identical machines. The ma-
chines have 1.4 Ghz Pentium IIl processors on Tyan
Thunder HEsI-T motherboards. These motherboards
have three independent PCI busses: 32bit/33Mhz/5V,
64bit/66Mhz/5V, and 64bit/66Mhz/3.3V. The boards use
512MB of 133Mhz registered SDRAM and are based on
the ServerWorks HESL chipset. We placed the crypto
card being tested either on the 64bit/66mhz/3.3V bus
or the 32bit/33Mhz/5V bus, as appropriate for the card.
The crypto cards we used are:

e Broadcom 5805 reference design board (32bit).
e Broadcom 5820 reference design board (64bit).

e GTGI XL-Crypt (based on the Hifn 7811 chip)
(32bit).

e NETSEC 7751 (based on the Hifn 7751 chip)
(32bit).

o Hifn 6500 reference design board (32bit).

o Hifn 7814 reference design board (64bit).

The Hifn data-sheet gives a peak performance for the
7751 chip of 62 Mbps for encryption and 110 Mbps
decryption, when using IPsec with 3DES/SHA1/LZS
(LZS is a data-compression algorithm). When the 3DES
engine alone is used, both encryption and decryption
throughput are 83 Mbps. Broadcom’s web site places
the peak performance of the 5820 chip at 310 Mbps of
3DES-SHA1, when used in IPsec. Furthermore, they
claim 800 1024-bit RSA signature computations per sec-
ond.

5.2 OCF Throughput

To determine the raw performance of OCF, we use a
single-threaded program that repeatedly encrypts and
decrypts a fixed amount of data with various symmetric-
key algorithms, using the /dev/crypto interface. We run
the test against all the hardware accelerators listed in
the previous section, as well as using the kernel-resident
software implementation of the algorithms. We vary the
amount of data to be processed per request across exper-
iments. To measure the overhead of OCF without the
cryptographic algorithms, we added to the kernel a null
algorithm that simply returns the data to the caller with-
out performing any processing. The results can be seen
in Figure 1.
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Figure 1: Crypto-hardware performance. The KERNEL-
NULL bar indicates use of the null encryption algorithm.
The KERNEL-DESand KERNEL-3DESbars indicate use of
the software DES and 3DES implementations in the kernel.
The remaining bars indicate use of the various hardware
accelerators. The vertical axis unit is Mbits/second.

We can make several observations on this graph. First,
even when no actual crypto is done, the ceiling of the
throughput is surprisingly low for small-size operations
(64 bytes). In this case, the measured cost consists of
the overhead of system call invocation, argument valida-
tion, and crypto-thread scheduling. As larger buffers are
passed to the kernel, the throughput increases dramat-
ically, despite the increasing cost of memory-copying
larger buffers in and out of the kernel. When we use
1024-byte buffers, performance in the no-encryption
case jumps to 420 Mbps; for 8192-byte buffers, the
framework peaks at about 600 Mbps.

Notice however that this peak corresponds to a single
process issuing crypto requests. This process is blocked
after each request, the scheduler context-switches to the
crypto thread (which was blocked waiting for requests),
the null algorithm executes and the completed request
is passed back to the /dev/crypto driver, which wakes
up the blocked user-level process. If many processes
are issuing requests, the crypto thread’s request queue
will contain multiple requests. When we run multiple
processes, each will queue a request (and be blocked by
/dev/crypto); the crypto thread will process all these re-
quests in a flurry of activity, and cause all processes to
wake up in synchrony. The crypto thread will then go
back to sleep, while each of the processes will issue an-
other request. This cycle repeats for the duration of the
experiment. As a result, more processes using the OCF
result in increased aggregate throughput, simultaneously
increasing the average processing latency.

These buffer sizes are close to the typical sizes of re-



quests issued by some of the most-commonly used ap-
plications:

e SSH keyboard input results in many small requests
(so we are close to the 64-byte case); responses
from the server are larger, but not considerably so.
When X forwarding is used, we can occasionally
get larger buffers.

e SCP/SFTP issue larger requests; OpenSSH, a pop-
ular implementation, uses requests of 4 KB.

e SSL/TLS also issue large requests. The maximum
size of an SSL record is 16 KB, but can be less if
(optional) compression is used.

e |Psec processes packets at the network layer. Such
traffic is trimodal [3]: about 40% of packets are 40—
60 bytes (the vast majority of these being TCP ac-
knowledgments), with the remainder split between
576 bytes (TCP MSS when no Path MTU Discov-
ery is used) and 1460 bytes (when Path MTU Dis-
covery is used).

When we use real cryptographic algorithms, we notice
that the performance of DES done in software is close to
that of no encryption for small packet sizes; even 3DES
performance is just half of the no-encryption case. If
we use larger buffer sizes, the performance of software
crypto done in the kernel (the KERNEL-* labeled bars)
degrades rapidly. When we use hardware accelerators,
we notice two different trends. For small buffers, the
performance degrades with respect to the software case.
This indicates that the additive costs of system call in-
vocation, OCF processing, and the 2 PCI transactions
(to/from the crypto cards) dominate the cost of doing
crypto. However, as we move to larger buffer sizes, per-
formance quickly improves as these overheads are amor-
tized over larger buffers, despite the fact that more data
has to be copied in and out of the kernel and over the PCI
bus. Thus, to improve the performance of the system
when applications issue large numbers of small requests,
either request-batching should be done, a faster proces-
sor should be used, or the number of user/kernel cross-
ings should be minimized. When larger buffers are being
processed, it pays off to use some cryptographic accel-
erators, although not all such cards are equal in terms of
performance.

Notice that the performance of DES and 3DES is the
same in each of the 5805 and 5820 cards; these cards re-
ally implement only 3DES in Encrypt-Decrypt-Encrypt
(EDE) mode, and emulate DES by loading the same key
in one of the Encrypt and the Decrypt engines (effec-
tively canceling each other out). In contrast, the 7751

seems to implement two separate crypto engines for
DES and 3DES, or uses a shortcut in its 3DES engine.
The 7811 seems to implement different engines as well,
but the performance difference between the two is not as
pronounced.
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Figure 2: RSA signature generation. The horizontal axis
indicates the modulus size, in bits. The vertical axis indi-
cates number of operations per second.

Similarly, we measure the performance of OCF for
public-key operations. In this case, there are no kernel-
resident software public-key algorithms. We count the
number of RSA signature generations and verifications
per second, for different accelerators and key sizes (512
to 4096 bits, as supported by the each cards). The results
are shown in Figures 2 and 3.

The Hifn 6500 and 7814 are geared more towards
slower, embedded applications, so the fact that their per-
formance is considerably worse than software is not sur-
prising. The number of verifications is much larger than
the number of signature generations in unit time. This
is because, as with most crypto libraries, OpenSSL opts
for small values for the public part of the RSA key (typ-
ically, 216 + 1) and correspondingly large values for
the private key. This causes the public-key operations
(encryption and verification) to be much faster than the
private-key operations, even though they are in principle
the same operation (modular exponentiation).

Another interesting observation is that the RSA sign
throughput is higher in the software case (see Figure 2).
This happens because the CPU on the crypto-card is
slower than the host CPU and optimized for bit opera-
tions, which is as useful for public key cryptography. So
the “anomaly” in Figure 2 is actually expected. How-
ever, as we mentioned in Section 5.1, Broadcom claims
that the 5820 can perform 800 RSA signature operations
per second with 1024-bit keys. In our case, we only see
slightly over 100. There are two explanations for this.
First, we are under-utilizing the 5820: there is only one
thread issuing RSA sign operations, which is blocked
waiting termination of each request. Once the card com-



RSA VERIFY Crypto Throughput
6000 |

5000 —

2000 —
1000 —
0 -

T T T
sSw 5805 5820 6500 7814

bit gps/sec
& &
8 8
I I

B 512 1024 W 2048 B 4096

Figure 3: RSA signature verification. The horizontal axis
indicates the modulus size, in bits. The vertical axis indi-
cates operations per second.

putes the signature, it has to wait for the crypto frame-
work to wake up the blocked process, then the scheduler
to context-switch to it, the process to issue an ioctl() call
to get the results, and then another ioctl() call to issue
the next request, which is placed on the crypto thread’s
queue. Finally, the scheduler has to context-switch to
the crypto thread. During all this time, the accelerator is
idle, since there is no other process using it. The second
reason for the higher vendor-stated performance is that
the tests they performed used the CRT parameters for the
RSA operations, which make RSA processing consider-
ably faster. However, for implementation reasons, our
OpenSSL engine does not use CRT parameters yet.

5.3 System-wide Effects

To determine the system-wide benefits of offloading
cryptographic processing, we run multiple threads (up
to 24) of the openss| speed benchmark with vari-
ous algorithms, while at the same time we run a simple
CPU-intensive job. The CPU *“hog” process consists of
a small program that performs 232 function calls, each
function call performing an integer-multiply operation.
The elapsed time for the CPU hog process was recorded
for each (algorithm, number of threads) tuple. As we see
in Figure 4, the crypto accelerators very effectively elim-
inate contention for the otherwise-shared resource, the
CPU, whether the crypto performed is symmetric (DES,
3DES) or asymmetric (DSA with 1024-bit keys). The
execution time for the hog process remains constant, re-
gardless of the number of threads of execution.

54 Load Balancing

Finally, we wish to determine how well the OCF can
load-balance crypto requests when multiple accelerators
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Figure 4: Program execution time while multiple threads
perform crypto-operations in parallel. The bars show the
elapsed time in seconds for executing the CPU-bound pro-
cess for different algorithms and numbers of threads.

are available, and the aggregate throughput that can be
achieved in that scenario. We use a custom-made card
by Avaya that contains four Hifn 7751 chips that can be
used as different devices through a PCI bridge resident
on the card. We use multiple threads that issue encryp-
tion requests for 3DES, and vary the buffer size across
different runs. The results are shown in Table 1. As
we can see, performance peaks in the case of 32 threads
and 16 KB buffers at 320 Mbps, which is over 96% of
the maximum rated throughput of four Hifn 7751 chips.
The card was installed on the 64bit/66Mhz PCI bus, but
because the chip is a 32bit/33Mhz device, the maximum
bus transfer rate is 1.056 Gbps. At our peak rate, we use
over 640 Mbps of the bus: 320 Mbps for data in each
direction (to and from the card), plus the transfer initial-
ization commands and descriptor ring probing, etc., thus
utilizing over 60% of the PCI bus. Notice that because
the card uses a PCI bridge, a 2-cycle latency is added on
each PCI transaction.

The card was installed on the 64bit/66Mhz bus because
the system’s 32bit/33Mhz bus exhibited surprisingly bad
performance, probably because many other system com-
ponents are found on that bus and likely cause con-
tention: since the machine is operating as it normally
would while this test is being run, the scheduler is ac-
tive, and two clock interrupts are being received at 100
and 128 Hz respectively. Other devices are also generat-
ing their own interrupts.

Another possible cause is an artifact of the i386 spl pro-
tection method: a regular spl subsystem disables the in-
terrupts from a certain class of devices at the invocation
of an spIX() call. For instance, calling splbio() blocks
reception of interrupts from all devices which are in the
“bio” class of devices. On the i386, the registers used



Number of threads 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes | 16384 bytes
1 3.06 Mbps | 11.45 Mbps | 33.15Mbps | 59.49 Mbps | 79.19 Mbps | 80.75 Mbps
2 5.53 Mbps | 18.40 Mbps | 56.07 Mbps | 111.60 Mbps | 154.18 Mbps | 160.02 Mbps
3 6.44 Mbps | 23.25 Mbps | 71.31 Mbps | 152.28 Mbps | 229.60 Mbps | 238.24 Mbps
4 6.83 Mbps | 25.77 Mbps | 80.91 Mbps | 182.65 Mbps | 292.15 Mbps | 299.33 Mbps
32 7.37 Mbps | 27.51 Mbps | 94.05 Mbps | 249.17 Mbps | 313.79 Mbps | 320.19 Mbps

Table 1: Crypto-request load-balancing using a quad-Hifn 7751 card on a PCI 64bit/66Mhz bus.

Number of threads 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes | 16384 bytes
1 5.42 Mbps | 18.88 Mbps | 61.94 Mbps | 151.95 Mbps | 300.88 Mbps | 254.79 Mbps
32 9.91 Mbps | 37.01 Mbps | 120.71 Mbps | 410.27 Mbps | 758.85 Mbps | 801.81 Mbps

Table 2: Crypto-request load-balancing using four 5820 cards on a PCI 64bit/66Mhz bus.

to do interrupt blocking (found on the programmable in-
terrupt controller, also known as the PIC) are located on
the 8Mhz ISA bus, which is what OpenBSD uses for in-
terrupt management (as opposed to the APIC).

Worse yet, some operations on this device require a 1
usec delay before taking effect. To partially mitigate
this extremely high overhead, the i386 kernel interrupt
model instead makes the vectors for blocked interrupt
routines point to a single-depth queuing function which
does the actual interrupt blocking at the time of recep-
tion. When the spl is lowered again, the original inter-
rupt handler is called. However, the 8Mhz ISA bus still
had to be accessed. This has the effect of further reduc-
ing the available bandwidth on the PCI bus. One small-
buffer benchmark generated over 62,000 interrupts/sec;
we believe that the spl optimization is failing under such
load.

Using four 5820 cards on a 64bit/66Mhz PCI bus allows
us to achieve even higher throughput, as shown in Ta-
ble 2. We show only the 1 and 32-thread tests; the rest of
the measurements followed a similar curve as the quad-
7751. Performance peaked at over 800 Mbps of crypto
throughput. Using the same analysis as before, we are
using in excess of 1.6 Gbps of the fast-PCI bus, which
has a throughput of 4.22 Gbps, achieving slightly over
38% utilization of the bus. As we mentioned in Sec-
tion 5.1, the vendor rates this card at 310 Mbps. Thus,
the maximum theoretical attainable rate would be 1.24
Gbps. We achieve 64.5% utilization of the four cards
in this case. A rough sampling of CPU utilization dur-
ing these large block benchmarks on both cards showed
around 10,000 interrupts/second, which is substantial for
aPC.

Investigating further, we determined that all four 5820
cards were sharing irq 11. Thus, it is possible that

the culprit is the spl optimization previously mentioned,
at least for the small buffer sizes: the vmstat util-
ity shows us anything from 50,000 to 60,000 inter-
rupts per second when processing buffers of 16 to 1024
bytes. Furthermore, because of a quirk in the processing
of shared irq handlers, some cards experience slightly
worse interrupt-service latency: shared irg handlers are
placed in a linked list; if multiple cards raise the inter-
rupt at the same time, the list will be traversed from the
beginning for each interrupt raised — and each irq han-
dler will poll the corresponding card to determine if the
interrupt was issued by it. However, fixing this quirk or
moving the cards on different irq’s did not significantly
improve throughput.

When we use 8192-byte buffers, the interrupt count
drops to 12,000, which the system can handle. In each
of these cases, the system spends approximately 65% of
its time inside the kernel. Most of this cost can be at-
tributed to data copying. However, as we move to larger
buffer sizes, we find the system spending 89% of its time
in the kernel, and only 1.9% in user applications, for
the case of 16 KB buffers. The number of interrupts in
this case is only 5,600, which the system can easily han-
dle. The problem here is that there is considerable data
copyin/copyout between the kernel and the applications;
aggravating the situation, while such data copying is in
progress no other thread can execute, causing a “convoy”
effect: while the kernel is copying a 16 KB buffer to the
application buffer, interrupts arrive that cause more com-
pleted requests to be placed on the crypto thread’s “com-
pleted” queue. The system will not allow the applica-
tions to run again before all completed requests are han-
dled, which cause more data copying. Thus, the queue
will almost drain before applications will be able to issue
requests again and refill it. We intend to further investi-
gate this phenomenon.



Fundamentally, the data copyin/copyout limitation is in-
herent in the memory subsystem. We measured its write-
bandwidth to be approximately 2.4 Gbps. Using the
crypto cards, we are in fact doing 3 memory-write oper-
ations for each data buffer: one copyin to the kernel, one
DMA from the card to main memory, and one copyout
to the application. Notice that data DMA’ed in from the
card is not resident in the CPU cache, as all such data
is considered “suspect” for caching purposes. In addi-
tion, there is an equal amount of memory reads (copyin,
DMA in from the card, copyout). Each of those transfers
represents an aggregate of 800 Mbps. When we ran the
same test with three 5820 cards, performance slightly
improved to 841.7 Mbps in the case of 16 KB buffers,
achieving over 90% utilization of the three cards. In this
case, the memory subsystem is still saturated, but the
cards can more easily get a PCI-bus grant and perform
the DMA.

6 Discussion

6.1 Cryptography intheKerne

As we saw in the previous section, the influence of multi-
threading on performance is strong, which suggests that
busy servers can make better use of hardware cryptog-
raphy than clients. This supports the observations of
Dean, et al. [6] that it may make sense to make cryp-
tography a shared network service to achieve the best
cost/performance in a secure system. Notice that, within
the boundaries of one host (operating system instance),
this is precisely what the OCF does. We should also
mention that use of a threaded model for applications
involves an obvious security vs. implementation com-
plexity trade-off.

Although the performance of individual applications
may not improve drastically when using an accelerator,
it appears that the aggregate performance of a number of
applications (as may be the case in a system with many
remote login sessions, a busy web server, or a VPN gate-
way) does improve, as a result of increased utilization.
Furthermore, hardware accelerators can give a perfor-
mance boost to the rest of the system, as was seen in
Figure 4. Very simply, they eliminate contention for the
CPU, which is a resource shared by all applications and
the operating system itself. Thus, while throughput is
not drastically improved (and may in fact degrade in cer-
tain scenarios) with use of hardware acceleration, over-
all system utilization improves because the main CPU is
left to perform other tasks.

6.2 System Architecture

As we saw in Section 5.4, data copying and the PCI bus
quickly become the limiting factor. In practice, the sit-
uation is even worse since cryptography is used in con-
junction with either network security protocols, in which
case the network interface card (NIC) contents for a slice
of the PCI bandwidth, or with filesystem encryption, in
which case the storage device claims a portion of the bus.
This situation suggests that, for maximum performance,
cryptographic support must be provided by the individ-
ual devices (e.g., NICs, disk controllers, etc.). Alterna-
tively, cryptographic support must be located elsewhere
in the system architecture (e.g., attached to the main
CPU, the system “north bridge” (as the video subsystem
is), or the memory subsystem. Any of these approaches,
if implemented correctly, will improve application per-
formance by reducing contention for the PCI bus, but at
the same time will create new challenges for operating
systems that have to support these new devices, such as
session migration and fail-over (which the OCF supports
by design, as we discussed in Section 3).

Although the OCF does not directly take advantage of
NICs that support IPsec-processing offloading, since
they are not general-purpose cryptographic accelerators,
we have extended the IPsec stack to use them. The cards
of this type we are familiar with are 100 Mbps full-
duplex Ethernet, and it seems reasonable to assume that
they can achieve that performance, given our results with
dedicated cryptographic processors. Unfortunately, at
the time this paper was written, we did not have enough
information to write a device driver that could take ad-
vantage of such features. We are also not aware of any
commercially-available hard drive controllers that pro-
vide built-in encryption services.

6.3 TheEffect of Small Requests

The nature of the challenge for operating systems and
their support for cryptography is clear. On every mea-
surement, without exception, small-sized operations fare
much worse than those performed on large data buffers.
In some cases, buffer size influences performance more
than the choice between hardware or software cryptog-
raphy. This suggests that the per-operation overhead is
very high, and this is clear from the larger data sizes,
which get close to the throughput advertised by the
board manufacturer, which we presume is “best-case”.
In this respect, our findings confirm those of [15]. Since
many cryptographic protocols are transactional in nature
rather than bulk transfers, these small data operations
will be the common case. Energy should be spent on



reducing the overhead of such cases.

As we mentioned in Section 5.2, there are several possi-
ble approaches: request-batching, kernel crossing and/or
PCI transaction minimization, or simply use of a faster
processor. These are more cost-effective solutions than
deploying a hardware accelerator. In situations where
bulk data transfer is the norm (as may be the case
in the various Storage Area Network technologies cur-
rently under consideration), cryptographic accelerators
can drastically improve performance, especially for the
more “expensive” algorithms such as 3DES. Unfortu-
nately, there were no commercially available hardware
accelerators for AES supported by OpenBSD, so we
cannot compare the software and hardware cases for that
algorithm. However, recent attacks against AES make
likely the continued use of 3DES in many environments.

6.4 Other Optimizationsand Future Work

Smarter load balancing. The load-balancing cur-
rently done in OCF, as discussed in Section 3, is very
simple. It performs load-balancing of sessions, by keep-
ing a record of the active sessions per producer and se-
lecting the least-loaded one. However, not all sessions
are equivalent in terms of processing requirements: an
FTP-over-1Psec session will use the OCF more heavily
than a telnet-over-1Psec one. Furthermore, the current
scheme does not perform load-balancing for public-key
operations. Finally, all producers of crypto services are
considered equal, in terms of performance. All these is-
sues point to several potential improvements that can be
made to the OCF.

For example, drivers can state their peak performance
(experimentally measured, using the vendor-provided
numbers, or measured at system boot time), and the OCF
can keep a record of the number of operations actively
pending on each driver. However, this requires sessions
to be simultaneously established on all these cards; as
these cards have a limited amount of memory for ses-
sion caching, this approach is perhaps not optimal for a
very busy system. One potential solution is to allow the
OCF to do dynamic load-balancing of sessions, repli-
cating and tearing them down on additional cards based
on their measured traffic, by maintaining session infor-
mation internally. Asymmetric operations are easier to
load balance, as they do not depend on the concept of
the session. An additional benefit of implementing load-
balancing in this way is that we can let the software
driver handle small requests, reducing latency, and use
the hardware producers for larger requests. One compli-
cation to this is that many cards (e.g., Hifn) do not export
internal state such as Vs or intermediate MAC results,

which makes such session sharing difficult.

Algorithm-chaining across cards. It is possible that
an OCF consumer needs to chain together a number
of cryptographic algorithms, but no hardware producer
implements all these. Currently, this would cause the
session to be established on the software pseudo-driver
(which implements all algorithms). However, by main-
taining session information inside the OCF, it is possi-
ble to create “virtual sessions” across multiple (hardware
and software) producers. In this case, the OCF will is-
sue multiple sequential requests to the various produc-
ers, invoking the consumer-specified callback routine at
the end. We have a prototype of this, but we need to
further evaluate the performance implications and trade-
offs of doing multiple PCI transactions.

Asymmetric  Multiprocessing (AMP) support.
There is an increasing number of multi-processor
systems. Most of these under-utilize the secondary
processor, as many modern tasks are I/O-limited.
Furthermore, it seems likely that the first version of
SMP support for OpenBSD will be very coarse-grained:
only one processor (and process) can be inside the
kernel at a time. An alternative approach is to designate
the secondary processor as a dedicated cryptographic
accelerator that registers with the OCF as such. No
special support by the OCF is necessary, and we are
currently working toward an implementation of this.

OpenSSL  support algorithm-chaining with OCF.
As we mentioned in Section 4.2, TLS and SSH use
the OCF at the granularity of the algorithm. That
is, if both an encryption and a message authentication
(MAC) algorithm have to be applied on an outgoing
message, there will be two distinct calls to the OCF
via /dev/crypto. (The same situation holds for incoming
messages.) Since the OCF supports algorithm chaining,
there is no reason why OpenSSL cannot take advantage
of this to reduce the number of user/kernel crossings.
This requires modification of the TLS implementation
in OpenSSL and of OpenSSH, to support this algorithm
chaining. While this is purely an implementation mat-
ter, the complexity of the OpenSSL code is a significant
deterrent to progress in this direction.

Minimize number user/kernel crossings and data
copying. In most practical uses of the OCF (especially
in protocols like TLS or SSH), an application issues one
or more crypto requests via /dev/crypto, followed by a
write() or send() call to transmit the data. Similarly, a



read() or recv() call is followed by a number of requests
to /dev/crypto. This implies considerable data copying
to and from the kernel, and potentially unnecessary con-
text switching back and forth. An alternative approach
is to “link” some crypto context to a socket or file de-
scriptor (when doing application-level file encryption),
such that data sent or received on that file descriptor are
processed appropriately by the kernel: for example, a
TLS implementation might construct a data record and
simply write() it to the socket (one data copy and ker-
nel crossing), only to have the kernel pass it to the OCF
for processing before actually passing it on to TCP for
transmission. This requires some discipline by the appli-
cation, which must set the state on the socket and only
write() appropriately-formatted record, as well as some
support in the kernel to decode incoming TLS or SSH
frames for processing by the OCF before passing them
on to the application.

Another potential approach is to do “page sharing” of
data buffers; when a request is given to /dev/crypto,
the kernel removes the page from the process’s address
space and maps it in its own. When the request is done,
the kernel re-maps the page back to the process’s ad-
dress space, avoiding all data copying. This works well
as long as /dev/crypto remains a synchronous interface.
If processes are allowed to have multiple pending re-
quests, accesses to that page while it is being shared
with the kernel must be caught and handled, similar to
the way copy-on-write of memory pages is handled. An
alternative is to block any process that tries to access
such pinned-down pages until the crypto request is com-
pleted. Obviously, pages that are shared between pro-
cesses can cause similar problems even in the current
mode of operation. Operations that cross page bound-
aries also have to be dealt carefully.

7 Conclusions

We presented the OpenBSD Cryptographic Framework
(OCF), a service virtualization layer implemented inside
the kernel, that provides uniform access to cryptographic
hardware accelerator cards by hiding card-specific de-
tails behind a carefully designed API. Other kernel sub-
systems and user-level processes can use the API with
symmetric and asymmetric algorithms. The OCF offers
several other features, such as load-balancing, session
migration, and algorithm-chaining.

Our performance evaluation demonstrated the OCF’s
ability to utilize available accelerators to within 95%
of their peak performance. This validates our decision
to design for ease of use by applications and seamless

support for new accelerators, over a device-specific ap-
proach which should be able to fully utilize that device’s
capabilities. In addition, we demonstrated aggregate
(across several concurrent applications) throughput for
3DES encryption in excess of 800 Mbps. Furthermore,
use of hardware accelerators can remove contention for
the CPU and thus improve overall system responsiveness
and performance for unrelated tasks.

Our evaluation also allowed us to determine that the lim-
iting factor for high-speed cryptography in modern sys-
tems is data copying and the PCI bus. Furthermore,
small data-buffers should be processed in software, free-
ing hardware accelerators to handle larger requests that
better amortize the system and PCI transaction costs.
On the other hand, multi-threading results on increased
utilization of the OCF, improving aggregate through-
put. We made recommendations for future directions
in architectural placement of cryptographic functional-
ity, operating system provisions, and application design,
and discussed several improvements and promising di-
rections for future work.
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Appendix A: OCF Kernel API

e int32_t crypto_get_driverid();
int crypto_register();
int crypto_kregister();
int crypto_unregister();

Used by device drivers to register and unregister symmetric and asymmetric algorithm support with the OCF.
e void crypto_done();

void crypto_kdone();

Called by device drivers on completion of a request (symmetric and asymmetric, respectively).

e int crypto_newsession();

Called by consumers of cryptographic services (such as the IPsec stack) that wish to establish a new session with
the framework. On success, the first argument will contain the Session Identifier (SID). The second argument
contains all the necessary information for the driver to establish the session (keys, algorithms, offsets, etc. The
third argument indicates whether only hardware acceleration is acceptable.

e int crypto_freesession();

Called to disestablish a previously-established session.

e int crypto_dispatch();
Called to process a request, encapsulated in its only argument. The various fields in that structure contain:

— The SID.
— The total length in bytes of the buffer to be processed,
— The total length of the result, which for symmetric crypto operations will be the same as the input length.

— The type of input buffer, as used in the kernel malloc() routine. This will be used if the framework needs
to allocate a new buffer for the result (or for re-formatting the input).

— The routine that the OCF should invoke upon completion of the request, whether successful or not.

— Theerror type, if any errors were encountered. If the EAGAIN error code is returned, the SID has changed.
The consumer should record the new SID and use it in all subsequent requests. In this case, the request
may be re-submitted immediately. This mechanism is used by the framework to perform session migration
(move a session from one driver to another, because of availability, performance, or other considerations).

— A bitmask of flags associated with this request. Currently, the only flag defined is CRYPTO_F_IMBUF,
which indicates that the input buffer is an mbuf chain.

— The input and output buffers. The input buffer may be an mbuf chain or a contiguous buffer (as identified
by the flags). The output buffer will be of the same type.

— A pointer to opaque data. This is passed through the crypto framework untouched and is intended for the
invoking application’s use.

— A linked list of operation descriptors, which indicate what operations should be applied, and in what
sequence, to the input data. The descriptors indicate where each operation should start, the length of the
data to be processed, where on the output buffer should the results be placed, the key material to be used,
and various operation-specific flags (e.g., what Initialization Vector to use for CBC-mode encryption).

e int crypto_kdispatch();
Similar to crypto_dispatch(), for public-key operations.



