bio and sensors in
OpenBSD

Marco Peereboom <marco@openbsd.org>
David Gwynne <dlg@openbsd.org>

OpenCON 2006

introduction

what is RAID management!?
what are sensors!

why do we care!

what's the problem?

what's the solution?

what is RAID management!?

the ability to see the configuration of RAID
sets

the ability to detect failures int\RAID volumes
and components

the ability to fix RAID sets

extra bits for people who like to push
buttons

what are sensors/?

sensors are anything that provides
environmental information about your system

anything that can tell you about the status of
your components, eg:

* cpu temp and voltage
* ambient temp

* power supply redundancy

why do we care!

computers are now built with redundancy so
they can withstand failures of their'parts

environmental readings aid in predicting
potential future failures

we can replace the part or_shutdown the
machine before component failure or
permanent damage to the machine

what's the problem?

every vendor implements tools to manage
raid devices and sensors differently

these tools have evolved over the years into
extremely complex and brittle stacks

open source operating systems seem merely
content to boot on the hardware and let the
vendor provide the monitoring

every implementation looks different

what's the solution!

* take some responsibility and make our own

* more specifically:

define your own stack and interfaces

get the specification for the hardware so
you can fit drivers into the'interfaces

write the code

give talks about it

sensors in depth

® sensors are a stack made
up of:

® t

o t

ne hardware

ne driver

® the sensor framework

® sysctl

® 2al| the smarts are in the
sensor framework

userland

kernel

sysctl

sensor framework

driver

hardare

sensor hardware

e we've found a lot of sensors

e SCSI enclosures: ses, safte
* system management controllers: ipmi, esm

 |2C and SMBus devices: adc,;admcts, admilc,
amdtemp, admtm, admtmp, admtt, adt,
asbtm, asms, fcu, glenv, Imeny, Imtemp,
maxds, maxtmp, pcfadc, tsl, ...

sensor drivers

* the driver is responsible for retrieving, interpreting,
and normalising the sensor values off the hardware

 the driver allocates a sensor struct, fills it in;, and/adds
it to the sensor-framework

* it periodically updates the sensor values and status

* the driver can do its own updates

* or if it needs process context (eg, to sleep or do
DMA) it can register a task-with the sensor
framework

the sensor framework

maintains the list of sensors as drivers add.and
remove entries

provides a single place for sysctl to query all drivers

provides a single kernel thread for all sensors to
update out of via callbacks

sysctl

the sysctl interface is where userland and
kernel meet

when the kernel is queried it walks the list of
sensors and copies the requested sensors
struct out to userland

decouples updates and userland so reads will
not block

sensors in userland

userland gets the kernels sensor information
via sysctl(3)

sysctl(8) fetches and translates this info into
human readable output

sensorsd(8) tries to do something smart with
It

what a sensor looks

struct sensor {

¥

SLIST_ENTRY(sensor)
char

char

struct timeval
1nto64_t

enum sensor_type
enum sensor_status
int

int

list;
desc[32];
device[1l6]};
tv;

value;
type;
status;
num;

flags;

like

sensors in the kernel

void sensor_add(struct sensor *s);
vold sensor_del(struct sensor *s);
struct sensor *sensor_get(int 1d);

int sensor_task_register(void *arg,
void (*func)(void *), int period);
void sensor_task_unregister(void *arg);

sensors via sysctl(3)

int mib[] = { CTL_HW, HW_SENSORS, 0 };
struct sensor s;
size_t slen = sizeof(s);

sysctl(mib, sizeof(mib)/sizeof(mib[@]), &s,/ &slen, NULL, @);

sensors via sysctl(8)

sysctl hw.sensors

hw.sensors.@=1pmi@, Phys. Security, On, CRITICAL
hw.sensors.1l=1pmi@, Baseboard 1.5V, 1.51 V DC, OK
hw.sensors.Z2=1pmi@, Baseboard 2.5V, 2.51 V DC, OK
hw.sensors.3=1pm1@, Baseboard 3.3V, 3.34 V DC, OK
hw.sensors.4=1pmi@, Baseboard 3.3Vsb, 3.49 V. DC, OK
hw.sensors.5=1pm1@, Baseboard 5V, 5.10 V DC, OK
hw.sensors.6=1pmi@, Baseboard 12V, 12.10 V DC, OK
hw.sensors.7=1pmi@, Baseboard -12V, -12.30 V DC, OK
hw.sensors.8=1pmi@, Battery Voltage, 3.14 V/DC, OK
hw.sensors.9=1pmi@, Processor VRM, 1.47 V DG, 0K
hw.sensors.10=1pmi1@, Baseboard Temp, 30.00 degC, OK
hw.sensors.11=1pmi@, Processor 1 Temp, 36.00 degC, OK
hw.sensors.13=1pmi@, Baseboard Fan 1, 1980 RPM, OK
hw.sensors.14=1pmi@, Baseboard Fan 2, 2100 RPM, OK

sensorsd

* sensorsd polls the sensor values by
periodically retrieving them via sysctl

* sensorsd can react upon threshold values as
configured in /etc/sensorsd.conf, eg, if the
ambient temperature value exceeds 70 degC
then page the administrator

* currently awful, it is evolving

Sensors summary

* sensors are not magical, they're generally very

simple, ie, read a value off hardware and stash
It in a struct

e the same framework is enabled on all our
archs

* sensors are easy (and fun, like blinkenlights)
to implement and use

RAID management

similar to sensors in that we want to see the
status of redundant components

different to sensors in that we .need to do
more, eg, replace disks and add spares

hard to do because vendors don't'want to
give up documentation

vendors do provide tools, but...

vendor tools

binary only, and limited to specific archs
(1386, and whatever can run i386 binaries)

requires us to open big holes in the kernel
for userland to talk directly to the hardware
(and hasn't that worked so well for. X?)

provided under incompatible licenses, so can't
be shipped in the base system

therefore not supported on OpenBSD

RAID documentation

* attempts to obtain documentation have failed
for several reasons

Vendors do not posses current-and
accurate documentation

Vendors do not want to support a-product
beyond regular channels

Vendors think their hardware is special

typical RAID management
stack

® typically developed by
different teams resulting in GUI
large amounts of
abstraction

Agent

® the abstraction leads to
bugs (more code always

has more places for bugs .
to hide) Driver

Library

e different vendors have Firmware
their own stacks

RAID management essentials

* production machines do not need complex
tool chains for RAID management., They
essentially only need the following feature set:

* alerts
* monitoring
* Inquiry

* recovery operations

OpenBSD RAID management

bio(4)
Alerting

"% 3
Recovery Monitoring

bio(4)

technically it is a pseudo device that tunnels
ioctls for devices that don't have their own
/dev entry

drivers have to register with bio to be
accessible via bio

we define some ioctls that raid controllers
can implement that is accessable via bio

bio inside drivers

* |n order to support bio drivers need to
support some of the following ioctls:

* BIOCINQ, BIOCDISK, BIOCVOL for

enumeration of volumes and disks
 BIOCSETSTATE for adding spares

 BIOCALARM, BIOCBLINK for finding the
computer and the disks

 need a pass thru bus for access to phys bus

bioctl

bioctl is the userland half of our RAID
management tool

intended as the ifconfig of RAID controllers

it translates the bio ioctls into something
humans can grok

bioctl

* inquiry functions:
* display RAID setup and status
* blink enclosure slot so you can find-it

* recovery functions:

* alarm management
* create hot-spare

* rebuild to hot-spare

bioctl ami@

Volume
ami@ 0

ami@

um b WNNEFPOSFRLPRUITAAWNEOS

ami@ 2
ami@ 3

Status
Online
Online
Online
Online
Online
Online
Online
Online
Online
Online
Online
Online
Online
Online
Unused

Hot spare

bioctl in action

Size
366372454400

73403465728
73403465728
73403465728
73403465728
73403465728
73403465728

366372454400

73403465728
73403465728
73403465728
73403465728
73403465728
73403465728
73403465728
73403465728

Device

n
+ Q
S

Q.
R P OUTWRRPRRPEROOPANOS
(SR RN O IO

NS -
S S

SESESKS)

=
uh WL -
(S BN RO RO

RAIDS
ses0
ses?d
ses0
ses?d
sesl
sesl
RAIDS
ses?d
ses0
ses?d
sesl
sesl
sesl
sesl
sesl

<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR

<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR
<MAXTOR

ATLAS15K2_73SCA
ATLASA5KZ2 -73SCA
ATLAS15KZ2L73SCA
ATLAS15K2_73SCA
ATLAS15K2 73SCA
ATLAS15K2.73SCA

ATLAS15K2-73SCA
ATLAS15K2_73SCA
ATLAS15K2_73SCA
ATLAS15K2.73SCA
ATLAS15K2_73SCA
ATLAS15K2_73SCA
ATLAS15K2 73SCA
ATLAS15K2_73SCA

INZ6>
INZo6>
INZ6>
INZG6>
INZ6>
INZ6>

INZ6>
INZ6>
INZ6>
INZo6>
INZ6>
INZ6>
INZ6>
INZ6>

bioctl when we pull a disk

bioctl ami@

Volume
ami@

ami@

ami@

0

0
1
2
3
4
5
1
0
1
2
3
4
5
2

Status
Online
Online
Online
Online
Online
Online
Online

Degraded

Online
Online
Online
Rebuild
Online
Online
Unused

Size
366372454400

73403465728
73403465728
73403465728
73403465728
73403465728
73403465728

366372454400

73403465728
73403465728
73403465728
73403465728
73403465728
73403465728
73403465728

Device

n
Q
S

P RPFRPPOOOOOCOCUNM IFPPFPOOOSOOS

.Q...O...O...O
R PR UTWRRPRRPRPEROOPANGS

AWK U

=

SESISIS

NS -

S o

S S

SESISIS

RAIDS

ses® <MAXTOR
ses®@ <MAXTOR
ses®@ <MAXTOR
ses®@ <MAXTOR
sesl <MAXTOR
sesl <MAXTOR
RAIDS 11%/ .done
ses@®@ <MAXTOR
ses®@ <MAXTOR
ses@®@ <MAXTOR
sesl <MAXTOR
sesl _«<MAXTOR
sesl <MAXTOR
sesl <MAXTOR

ATLAS15K2_73SCA
ATLASA5KZ2 -73SCA
ATLAS15KZ2L73SCA
ATLAS15K2_73SCA
ATLAS15K2 73SCA
ATLAS15K2.73SCA

ATLAS15K2-73SCA
ATLAS15K2_73SCA
ATLAS15K2_73SCA
ATLAS15K2.73SCA
ATLAS15K2_73SCA
ATLAS15K2_73SCA
ATLAS15K2 73SCA

INZ6>
INZo6>
INZ6>
INZG6>
INZ6>
INZ6>

INZ6>
INZ6>
INZ6>
INZ6>
INZ6>
INZ6>
INZ6>

bioctl when we return the disk

bioctl ami@

Volume Status Size Device

ami® @ Online 366372454400 sdo RAID5S
® Online 73403465728 0:0.0 ses® <MAXTOR ATLAS15K2_73SCA/INZo>
1 Online 73403465728 0:2.0 ses® <MAXTOR ATLAS15K2-73SCA INZo>
2 Online 73403465728 0:4.0 ses® <MAXTOR.~ATLAS15KZ2:73SCA INZ6>
3 Online 73403465728 0:8.0 ses® <MAXTOR ' ATLAS15K2_73SCA INZ6%
4 Online 73403465728 1:10.0 sesl <MAXTOR ATLAS15K2_73SCA INZo6>
5 Online 73403465728 1:12.0 sesl <MAXTOR ATLAS15K2.73SCA INZ6>

ami@® 1 Degraded 366372454400 sdl RAID5 57% .done
® Online 73403465728 0:1.0 ses® <MAXTOR ATLAS15K2_-73SCA INZ6>
1 Online 73403465728 0:3.0 ses® <«MAXTOR ~ATLAS15KZ._73SCA INZ6>
2 Online 73403465728 0:5.0 ses®@ <MAXTOR AFLAS15KZ2. 73SCA INZ6>
3 Rebuild 73403465728 1:15.0 sesl <MAXTOR ATLAS15K2.73SCA INZo6>
4 Online 73403465728 1:11.0 sesl _«<MAXTOR ~ATLAS15KZ2_73SCA INZ6>
5 Online 73403465728 1:13.0 sesl <MAXTOR ' ATLAS15KZ2_73SCA -INZ6>

ami® 2 Unused 73403465728 1:9.0 sesl <MAXTOR/ -ATLASIS5KZ - 73SCATINZB>

ami® 3 Unused 73403465728 1:14.0 sesl <MAXTOR ' ATLAS15K2_73SCA INZ6>

bioctl when we make it a spare

bioctl -H 1:9 ami@
bioctl ami@

Volume Status Size Device

ami® @ Online 366372454400 sdo RAID5S
® Online 73403465728 0:0.0 ses® <MAXTOR ATLAS15K2_73SCAZJINZ6>
1 Online 73403465728 0:2.0 ses® <MAXTOR ATLAS15K2-73SCA INZo>
2 Online 73403465728 0:4.0 ses® <MAXTOR ~ATLAS15K2:.73SCA INZG>
3 Online 73403465728 0:8.0 ses® <MAXTOR ATLAS15K2_73SCA INZ6>
4 Online 73403465728 1:10.0 sesl <MAXTOR ATLAS15KZ2_73SCA' JINZb6>
5 Online 73403465728 1:12.0 sesl <MAXTOR - ATLAS15K2_73SCA INZG6>

ami@® 1 Degraded 366372454400 sdl RAID5 60% .done
® Online 73403465728 0:1.0 ses® <MAXTOR ATLAS15K2_73SCA INZ6>
1 Online 73403465728 0:3.0 ses® <MAXTOR ~ATLAS15K2._73SCA INZ6>
2 Online 73403465728 0:5.0 ses® <MAXTOR ~ATFLAS15KZ2. 73SCA INZo>
3 Rebuild 73403465728 1:15.0 sesl <MAXTOR ATLAS15K2. 73SCA INZ6>
4 Online 73403465728 1:11.0 sesl _«<MAXTOR ~ATLAS15K2_73SCA INZo6>
5 Online 73403465728 1:13.0 sesl <MAXTOR ~ATLAS15K2._73SCA -INZG>

ami@® 2 Hot spare 73403465728 1:9.0 sesl <MAXTOR ~ATLASISKZ 73SCATINZG:

ami® 3 Unused 73403465728 1:14.0 sesl <MAXTOR = ATLAS15KZ2_73SCA INZ6G>

other bioctl magic

* help! i am bleeding from the ears (or waking
people up when testing at lam)!

e Disable the alarm with:
bioctl -a quiet ami@

* help! show me the disk i need to replace!

e Blink it with:
bioctl -b 1.9 ami@

RAID and sensors

along with temperatures and voltages, we

have a type of sensor for reporting disk
status

provides near realtime information on the
health of a RAID disk:

hw.sensors.@=am10, sd@, drive/online, OK
hw.sensors.l=ami@, sdl, drive online, WARNING

raid disks can be monitored like all other hw

SES and SAF-TE

 short for "SCSI Enclosure Services" and "SCSI
Accessed Fault-Tolerant Enclosures”

* they're needed for one main reason

* SCSI does not support hot-plug without
either one of these devices. in the above
example the insertion of-the disk in slot |:9
would go undetected without an enclosure

* also provide normal temp/volt/etc sensors

supported hardware

ami(4) - LSI Logic MegaRAID ATA/SCSI/SATA
* older cards don't grok the commands
mfi(4) - LS| Logic MegaRAID SAS

arc(4) - Areca SATA RAID Controllers
ciss(4) - Compaqg Smart Array 5/6 RAID

ses(4), safte(4) enclosures

what’s new in 4.0

mfi(4), arc(4), plus bio support for these
controllers

bio on ciss(4)

rebuild progress for volumes

conclusion

* RAID isn't some arcane voodoo (no chickens
were harmed in the development of this
software), and sensors are not magical

* only a small amount of functionality is
necessary to create useful RAID management

* if we can do it, so can you.allowing vendors
to provide their tools rather than doco is
hurting users. imagine ifconfig by vendors

conclusion again

* RAID and RAID management isn’t magic

* it is extremely simple in reality,and any
vendor who says otherwise is a liar

* we have shown that RAID management is
easier than ifconfig

future work

* both sensors and bio have been around for a
while now. we intend to go back and rework
these a bit based on our experience. still
works in progress

e for sensors

* a new sensorsd with a hetero config file

* new sensor types and drivers for new hw

i have a dream... (the future)

 for bio

* add support to other RAID. cards: mpi(4),
gdt(4), ips(4)

 S.M.AR.T. support for physical disks so we
can predict failure

* convince vendors to give us 'docs

thx

marco, krw, pascoe, deraadt for putting up
with my stupid questions

marco and deraadt for giving me the freedom
to play around with this stuff

donators for giving me toys.to play with

grange, for being so talented

