
OpenIKED
Reyk Floeter (reyk@openbsd.org)

February 2013

Abstract

This paper introduces the OpenIKED project[14],
the latest portable subproject of OpenBSD[13].
OpenIKED is a FREE implementation of the most ad-
vanced Internet security “Internet Key Exchange ver-
sion 2 (IKEv2)” Virtual Private Network (VPN) pro-
tocol using the strongest security, authentication and
encryption techniques. The project was born in need
of a modern Internet Protocol Security (IPsec) imple-
mentation for OpenBSD, but also for interoperability
with the integrated IKEv2 client since Windows 7 and
to provide a compliant solution for the US Government
IPv6 (USGv6) standard. The project is still under ac-
tive development; it was started by Reyk Floeter as
“iked” for OpenBSD in 2010 but ported to other plat-
forms including Linux, FreeBSD and NetBSD in late
2012 using the “OpenIKED” project name.

1 Introduction

This paper provides a brief description of the
OpenIKED project, including technical background,

history and my personal motivation of creating
it. It is inteded to provide some complementary
information for my talk at AsiaBSDCon 2013 .

The project aims to provide a free implementa-
tion of the Internet Key Exchange (IKEv2) protocol
which performs mutual authentication and which
establishes and maintains IPsec VPN security policies
and Security Associations (SAs) between peers.
The IKEv2 protocol is defined in Request for Com-
ments (RFC) 5996, which combines and updates the
previous standards: Internet Security Association and
Key Management Protocol (ISAKMP)/Oakley (RFC
2408[8]), Internet Key Exchange version 1 (IKE)
(RFC 2409[3]), and the Internet DOI (RFC 2407[17]).
OpenIKED only supports the IKEv2 protocol; sup-
port for ISAKMP/Oakley and IKE is provided by
OpenBSD’s isakmpd(8) or other implementations on
non-OpenBSD platforms.

It is intended to be a lean, clean, secure, better con-
figurable and interoperable implementation that fo-
cusses on supporting the main standards and most
important features of IKEv2. I primarily wrote
OpenIKED with significant contributions from Mike
Belopuhov and various contributing OpenBSD hack-
ers.

OpenIKED is developed as part of the OpenBSD
Project. The software is freely usable and re-usable by
everyone under an Internet Systems Consortium (ISC)
license. The OpenBSD project sells CDs, T-Shirts and
Posters. Sales of these items help to fund development.

2 Background & History

2.1 Why another VPN protocol?

There are a number of free implementations of VPN
protocols available that can provide a sufficient secu-
rity for private network connections. But these pro-
tocols and implementations have different use cases,
limitations, benefits, and drawbacks. Most of them
are specialized in one aspect but cannot provide a so-
lution in another area.

An overview of VPN protocols

SSL-VPN is using the Secure Sockets Layer
(SSL)/Transport Layer Security (TLS) protocols to
securely tunnel network traffic on the “application
layer”. It is especially designed for “road-warriors”
and is typically running on top of HyperText Trans-
fer Protocol (HTTP) to pass web proxies in restricted
corporate networks or public hotspots. There is
no “SSL-VPN” standard, there are many different
vendor-specific implementations, and it is suffering
from some significant protocol overhead due to the
SSL and HTTP encapsulation. SSL-VPN is typically
not sufficient for high-performance VPN connections
and its security is questionable due to its proprietary
and vendor-specific nature.

OpenVPN is a well-known, open source SSL-VPN,
that does not use an HTTP layer and can run on ei-
ther TCP or UDP. It became very popular because
it was easier to use with clients running various oper-
ating systems and because of its user-friendly Graph-
ical User Interface (GUI) for most of these systems.
OpenVPN made open source VPN useable for a huge
user base, but it also had an negative impact on use
and development of IPsec. And this is still the case:
whenever someone asks deployment questions about
(IPsec) VPN on the OpenBSD mailing lists, you can
almost expect that someone will refer to OpenVPN
instead. OpenVPN still suffers from some of the prob-
lems of SSL-VPN, it is not standards-based and all the
portable versions are still based on a single implemen-
tation that is licensed under the terms of the GNU
Public License version 2 (GPLv2). The “copy-left”
limits the use in BSD environments and traditional
BSD-based products. For the sake of IPsec, we’re go-
ing to ignore OpenVPN here.

IPsec does a better job for performance, stronger se-
curity, and is very well reviewed by the security com-
munity. It is completely open and based on some RFC
standards in the Internet community which enables
interoperability between many different implementa-
tions. It is a real protocol stack and not just a strategy
or “buzzword” like SSL-VPN. The biggest problems of
IPsec are the limitations of its older IKE protocol and
some obscurities and incompatible vendor-specific ex-
tensions in existing implementations.

VPN protocols in OpenBSD

OpenBSD already supports some different VPNs in
the default installation of its “base” system, and there
are many more options in its ports collection of 3rd
party open source software.

npppd is a server-side Point-to-Point Protocol
(PPP) implementation. The development was started

as an internal project by the Japanese company Inter-
net Initiative Japan Inc. (IIJ) and later continued in
OpenBSD’s source tree since January 2010. It was not
enabled in the default OpenBSD build until recently
and it will be included in the upcoming OpenBSD 5.3
release for the first time, that is expected around May
2013. It provides support for a number of different
protocols that allow tunneling and private networking,
including Layer 2 Tunneling Protocol (L2TP), Point-
to-Point Tunneling Protocol (PPTP), and PPP over
Ethernet (PPPoE).

The PPP protocols are generally used for Remote
Access Service (RAS) solutions by Internet service
providers with dial-in and mobile access offerings. The
protocol stack provides a very flexible support for Au-
thentication, Authorization and Accounting (AAA)
that is critical in such environments. The protocols
also provide great interoperability with a number of
different platforms, including Microsoft Windows, Ap-
ple OS X, iOS, Google’s Android and all free operating
systems.

The PPTP and L2TP can be extended to provide
additional VPN capabilities such as encryption and
authentication of the tunnelled data. Nevertheless,
PPTP has some serious security vulnerabilities and
weaknesses that have been found in many security
analyses. While it might still be a choice to connect
mobile devices that do not support any other secu-
rity protocols, it cannot be considered as a sufficiently
secure VPN protocol.

The L2TP protocol is typically used as L2TP/IPsec
to encapsulate the link layer 2 tunneling of the pro-
tocol in a “secure channel” that is provided by IPsec
and negotiated by IKE. The major problem is the
complexity of its protocol stack and the overhead that
is caused by the encapsulation of different protocol
layers.

isakmpd is a BSD-licensed implementation of the
IKE protocol, the predecessor of IKEv2. It was writ-
ten in 1998 by Niklas Hallqvist and Niels Provos for
OpenBSD; an effort that was sponsored by Ericsson
Radio Systems. It is widely used in the OpenBSD
community and one of the major IKE implementa-
tions that was also ported to many other platforms
and is the foundation of many proprietary implemen-
tations. ISAKMP/Oakley provides a protocol layer
that was designed to allow multiple key exchange pro-
tocols, but IKE was the only protocol that ever im-
plemented and supported by the daemon. The basic
protocol is based on the standards RFC 2407, 2408,
2409 and many additional extensions.

The drawbacks of isakmpd are the limitations of
the old IKE protocol and the complex configuration
of the daemon itself. It uses an .ini-style configu-
ration file and an additional KeyNote policy file that
have to include a number of irritating and non-default

options. Configuring certificate-based IKE authenti-
cation was so difficult, that most users and tutorials
simply used the lesser-secure pre-shared key authenti-
cation that was easier to configure with isakmpd and
provided better interoperability with other IKE im-
plementations.

In 2005, the ipsecctl tool was introduced to
simplify the configuration of isakmpd in OpenBSD.
ipsecctl is providing a single alternative configura-
tion file, /etc/ipsec.conf, with a human-readable
and modern grammar. Additionally, the tool is smart
about some configuration defaults and dependencies.
It parses its own configuration file and generates a
more complex .ini-style configuration for isakmpd

that is feeded into the running daemon through its
First In - First Out (FIFO)-socket. It added another
layer to the implementation but greatly reduced the
complexity of deploying IPsec with isakmpd and sig-
nificantly reduced the number of users in OpenBSD.
However, it could not fix any of the limitations of the
IKE protocol.

2.2 Internet Key Exchange version 2

IKEv2 is an important VPN protocol because it
was designed for the strongest security requirements,
the basic protocol is based on a single RFC 5996
standard[5], and it attempts to eliminate some of the
worst limitations and misconceptions of IKE. It also
aims to reduce the vendor-specific extensions by in-
cluding them in a standardized way. Its importance
in the “real world” is also increasing since Microsoft
included it in its Windows 7 operating system, many
other vendors started to migrate to IKEv2, and it
became mandatory for compliance by standards like
USGv6.

Changes in IKEV2

The IKEv2 protocol got improvements based on the
experiences with the previous protocol version. It ac-
tually became a single protocol in contrast to IKE
that was based on an protocol stack with the addi-
tional ISAKMP and DOI layers that have been re-
moved in IKEv2. The format of encrypted messages
has been modified to match Encapsulating Security
Payload (ESP) and the initial handshake has been re-
duced to a single 4-way handshake that is replacing the
previous “main” and “aggressive” modes. Support for
road warriors has been greatly improved by adding
more flexibility and reorganizing the protocol; road
warriors with dynamic IP addresses can also use pre-
shared keys now. Dynamic configuration of the clients
is part of the standard using an integrated configura-
tion payload that is inspired by the former IKE-CFG
extension.

3 Design & Implementation

The implementation of OpenIKED was originally
started to get a future-proof IPsec keying daemon for
OpenBSD. Only the IKEv2 protocol is implemented
to get all the benefits of the improved version and to
avoid the additional complexity of its predecessor IKE.

The daemon is using a layout that is used by
OpenBSD’s modern networking daemons. Addition-
ally, further improvements of the layout and the re-
lated privsep and imsg frameworks are regularly
merged between these daemons. The existing isakmpd

still exists in OpenBSD and can be used for most
legacy IPsec configurations.

3.1 Project Goals

The following statements have been picked to describe
the project goals of OpenIKED .

Lean: Provide a small and monolithic architecture
that supports the main standards and most impor-
tant features of IKEv2. Monolithic means that we do
not even try to put lots of features in lots of dynamic
libraries.

Clean: Write readable and clean code following strict
coding style(9)[12] guidelines.

Secure: Implement secure code with strict validity
checking, bounded buffer operations, and privilege
separation to mitigate the security risks of possible
bugs. Use strong cryptography with sane but secure
defaults.

Interoperable: Provide good interoperability with
other IKEv2 implementations, support non-standard
extensions if it is required to interoperate with other
major implementations.

Configurable: Make the configuration easy and nice
with sane defaults, minimalistic configuration files and
good documentation in the manual pages. Avoid the
headaches of past and other IKE implementations.

Strong Crypto

OpenIKED supports strong crypto using modern cryp-
tographic ciphers and algorithms that provide state-of-
the-art security, performance, and possibly optimiza-
tion for modern hardware. The implementation sup-
ports modern ciphers for IKESA (IKEv2 messages)
and CHILDSAs (IPsec messages, e.g. ESP) includ-
ing authentication and pseudorandom function with
the SHA2 family and additional AES modes like AES-
CTR or AES-GCM. The Diffie-Hellman key agreement

protocol has been extended with additional modes in-
cludes support for latest elliptic curve groups.

AES-GCM combines the authentication and en-
cryption steps in the same AES block operation and
allows to leave out any expensive HMAC calcula-
tion. Mike Belopuhov added support for AES-GCM
and AES-GMAC (the authentication-only version) to
OpenIKED and the OpenBSD kernel and the ability
to accelerate it on modern CPUs using Intel’s AES
New Instructions (AES-NI). This enables a signif-
icant performance improvement compared to tradi-
tional software-based AES-CBC-128 + HMAC-SHA2-
256.

3.2 iked(8)

The iked program is the OpenIKED daemon itself,
accompanied by the ikectl control utility. It includes
the IKEv2 implementation based on RFC 5996[5].
The implementation was created to get an IKEv2
IPsec daemon for OpenBSD based on the modern
privilege separation model and the imsg frame-
work, a well-defined configuration grammar for the
/etc/ipsec.conf file and many other improvements
over isakmpd like support for stateful configuration
reloads, the ability to control the running daemon
with the ikectl utility instead of a FIFO socket, bet-
ter and more scalable support for gateway to gateway
and especially road warrior scenarios, improved X.509
Certificate Authority (CA) usability and proper use
of the OpenSSL API functions instead of custom
crypto code.

Example Configuration

The grammar is based on /etc/ipsec.conf of
ipsecctl, which loads its configuration and trans-
lates it into the .ini-style grammar of isakmpd. But
iked is able to load and understand the grammar
of the /etc/iked.conf configuration file directly
without the need for an additional tool like ipsecctl.
iked’s built-in support resolves many problems that
appeared with the ipsecctl approach and allows
features like stateful config reload.

This is a“complex” /etc/iked.conf configuration file
example for iked:

user "user1" "password123"

user "user2" "password456"

ikev2 "win7" passive esp \

from 10.1.0.0/24 to 10.2.0.0/24 \

local any peer any \

eap "mschap-v2" \

config address 10.2.0.1 \

config name-server 10.1.0.2 \

tag "$name-$id"

ikev2 esp \

from 10.3.0.0/24 to 10.1.0.0/24 \

from 10.5.0.0/24 to 10.1.0.0/24 \

from 10.5.0.0/24 to 172.16.1.0/24 \

local 192.168.1.1 peer 192.168.2.1 \

psk "mekmitasdigoat"

Privilege Separation Model

The privilege separation model[18] was first defined
for OpenSSH to restrict the effects of attacks and pro-
gramming errors. A bug in the unprivileged child pro-
cess does not compromise the security of the privileged
part and the operating system itself. It is a similar
approach to the modern “sandboxing” techniques but
without the need for any custom or non-standard ker-
nel extensions.

OpenIKED uses an emerged privsep model with the
imsg message passing framework that was first imple-
mented for OpenBGPD, copied between multiple dae-
mons, and later imported into OpenBSD’s libutil.

parent The parent process runs with full privileges to
execute privileged operations for the children. It opens
and binds to privileged sockets (e.g. UDP port 500),
opens the PF KEY Key Management API, Version
2 (PFKEYv2) socket, and loads the configuration file
before sending the required information and resources
to the unprivileged children.

ca The semi-privileged CA process handles every-
thing related to certificates and private keys. The pro-
cess runs in a chroot-environment of the /etc/iked

directory (or OpenIKED ’s default configuration di-
rectory of the portable version) and accepts requests
from the other processes. The idea behind CA is to
isolate the private keys and any other confidential in-
formation in a dedicated process. The other processes
can request CA lists and send signing or verification

requests of payload that is exchanged via imsg mes-
sages.

iked’s CA process has recently been adopted by
OpenSMTPD[15], making it an SMTP implementa-
tion that strictly separates private keys from connec-
tion handling or email processing.

ikev2 The unprivileged IKEv2 process is the main
actor in iked. It listens to requests from the net-
work on User Datagram Protocol (UDP) ports 500 and
4500, parses and handles messages, handles IKEv2 ses-
sions and PFKEYv2 communication with the kernel.
It can forward IKE messages, version 1, to the IKEv1
process.

ikev1 The unprivileged IKEv1 process is currently
an empty stub that does not implement the IKE pro-
tocol. It can accept messages, check the version, and
forward IKEv2 messages to the IKEv2 process. The
design intends to allow operation of both protocol ver-
sions on the same host, IP addresses and ports. In
the future, the process could either use an implemen-
tation of the first protocol version or forward IKEv1
messages to isakmpd over an internal communication
socket that could be added to both daemons.

ikectl The ikectl control utility communicates with
the iked parent process by sending imsg messages over
an UNIX socket attached to /var/run/iked.sock. It
is used for status, reset and configuration reload com-
mands.

3.3 ikectl(8) CA

In addition to status and reset commands, ikectl

includes an isolated tool to simplify maintenance of
the X.509 PKI and to set up a simple CA for iked

and its peers. It is not intended to be a fully-featured
CA toolset, but a set of commands that can create
and maintain keys and certificates that are sufficient
for medium or small installations of iked.

Example configuration of a local CA with two peers:

$ ikectl ca test create

$ ikectl ca test install

$ ikectl ca test cert 10.1.1.1 create

$ ikectl ca test cert 10.1.1.1 install

$ ikectl ca test cert 10.1.1.2 create

$ ikectl ca test cert 10.1.1.2 export

4 Portable version

Portability of networking software to different oper-
ating systems is a complicated task. Every system

comes with differences in system APIs, headers, li-
braries, linker options and file locations. Even stan-
dards like POSIX only provide some limited portabil-
ity if the target system follows that standard and is
referring to the same revision. Additionally, some sys-
tem features like cryptography and networking do not
provide a fully-standardized API. The most common
approach is to use automatic build tools like GNU au-
tomake and autoconf and many OS-specific #ifdefs
in portable code.

4.1 OpenBSD’s Portability Approach

There is a very important design decision in
OpenBSD: OpenBSD software is specifically written
for OpenBSD. It is not intended to have compatibility
glue in the source code, neither OS-specific #ifdefs,
abstraction layers or complex make files. Only exter-
nal projects that get imported into the base system
might use GNU autoconf tools, but software that was
written for OpenBSD keeps on using the system’s vari-
ant of BSD make. This makes the source code very
clean and helps readability, maintenance, auditing and
security.

OpenBSD distinguishes between “core” and
“portable” versions of its subprojects. The main
development usually happens in OpenBSD’s CVS
repository of the base system where the core version
is specifically written for OpenBSD. The “portable”
version adds a set of patches, a compatibility library,
and portable build infrastructure using the GNU
autoconf tools and is developed and maintained in
different places outside of OpenBSD’s CVS repository.

This approach was defined with the development
of OpenSSH-portable and is described in Damien
Miller’s “Secure Portability”[10] paper. All the other
portable OpenBSD projects, including OpenNTPD,
OpenBGPD, OpenSMTPD and OpenIKED are shar-
ing the same principles and some autoconf and com-
patibility code that was created by the OpenSSH-
portable team.

4.2 The Portable OpenIKED Project

The project website is available at
www.openiked.org[14]. In difference to the core
version that is located in OpenBSD’s CVS repository,
the source code of the portable version is currently
hosted at GitHub. Any changes on the portable code
are pushed to GitHub from a private Git repository.

The source tree of OpenIKED contains the following
directories:

• openiked/: Build scripts for automake/autoconf
and README files.

• openiked/ikectl/: The control and status util-
ity for iked.

• openiked/iked/: The IKEv2 daemon itself and
some files that are shared with ikectl.

• openiked/openbsd-compat/: Portability glue
and API functions for non-OpenBSD platforms.

Any changes in the core version are regularly merged
into the portable version using a combination of CVS
and Git. It is possible to compare the differences
between these versions, by cloning the portable code
from GitHub:

$ git clone git://github.com/reyk/openiked.git

And comparing the contents of the iked and ikectl
directories in the git repository with the original
sources in OpenBSD’s (Anon)CVS repository by run-
ning the cvs diff command in these subdirectories.
This will show the differences between to the core ver-
sion:

$ cd openiked/iked/

$ cvs diff -Nup | tee ../iked.diff

$ cd ../ikectl/

$ cvs diff -Nup | tee ../ikectl.diff

4.3 Supported Operating Systems

OpenIKED currently runs on only a few major op-
erating systems (“ports”), but it should theoretically
run on any Unix-like system with kernel-based IPsec
and PFKEYv2[9]. It should specifically run on all
systems that are based on the Internet Protocol Ver-
sion 6 (IPv6)/IPsec reference implementation of the
KAME project[4], including all major BSD operating
systems and their offsprings.

Nevertheless, the RFC document of the PFKEYv2
standard only specified an API for maintaining IPsec
SAs, but it didn’t specify an API for maintaining
IPsec security policies. OpenBSD was the first open
source operating system that supported IPsec and
PFKEYv2 by default and the developers created its
own API extensions in need for specifying security
policies, or “flows”. The KAME project implemented
it differently using its own API of an “Security Pol-
icy Database (SPD)”. Most other systems are using
the KAME-based PFKEYv2 variant with minor in-
dividual differences, most notably the differences in
supported crypto algorithms and extensions like NAT
Traversal (NAT-T). Support for this variant has been
added to the portable OpenIKED version making it
compatible with non-OpenBSD ports.

The software additionally depends on two libraries
that are widely available for all of these operating
systems: OpenSSL[16] 1.0 or later and libevent1[19]
(libevent2 should theoretically work but was not
tested as it is not used in OpenBSD).

Apple OS X (Darwin)

The Darwin operating system is originally based on
FreeBSD, which includes a BSD-like system and a
KAME-based IPsec stack and PFKEYv2 interface.
Darwin was the first port because of its practical im-
portance to run OpenIKED on MacBooks with Apple
OS X.

Since Apple deprecated OpenSSL in recent ver-
sions of Darwin/OS X, and their default installa-
tion only ships a pre-1.0 version, it is required to
install OpenSSL 1.0 manually. I decided to use the
MacPorts[7] system to install OpenSSL and libevent1
from its community-based collection of open source
packages.

On the kernel side, Darwin provides support for
NAT-T, but it is officially marked as “private” and
hidden from the official pfkeyv2.h header file. The
related information is found in the publicly available
sources of the “XNU” Darwin kernel and NAT-T is
supported by the port. Apple changed some of the
standard BSD kernel APIs and header files that are
related to networking and packet level bit and endi-
aness operations. For example, FreeBSD’s “htobe64”
byte conversion macros has been replaced by “OSS-
wapHostToBigInt64” in a non-standard header file.

NetBSD & FreeBSD

Both systems provide OpenSSL and libevent1 in their
package repositories and they are using an KAME-
based IPsec stack. The NAT-T extension is currently
not supported by the ports to these systems.

My biggest surprise was that they do not support
IPsec in their default “GENERIC” kernels, not even
as a loadable kernel module. It is required to compile
a custom kernel with some additional options to
enable IPsec and PFKEYv2.

For FreeBSD[2]:

options IPSEC

#options IPSEC_DEBUG

device crypto

For NetBSD[11]:

options IPSEC

options IPSEC_ESP

DragonflyBSD

I started looking into a DragonflyBSD port, but I gave
up quickly. Any efforts from the DragonflyBSD com-
munity would be appreciated.

GNU/Linux

Linux provides its own PFKEYv2 implementation
that is mostly compatible with the KAME variant.

The autoconf framework and compatibility library
that is based OpenSSH’s portable version made it sur-
prisingly easy to port OpenIKED to Linux.

A drawback is the fact that the Linux kernel devel-
opers invented their own non-standard “XFRM” ker-
nel API that is intended to replace PFKEYv2, which
is considered to be obsolete. The PFKEYv2 inter-
face still exists but is poorly maintained and lacks
some features, like working support for HMAC-SHA2-
256 HMAC authentication for IPsec. Linux originally
added HMAC-SHA2-256 support based on the pre-
standard specification with a truncation length of 96
bits that is incompatible to the standard length of
128 bits that is described in RFC 4868[6]. PFKEYv2
uses pre-defined identifiers and attributes for algo-
rithms, e.g. SADB X AALG SHA2 256 for HMAC-SHA2-
256 with 128 bits truncation. The Linux kernel rec-
ognizes the SADB X AALG SHA2 256 identifier but as-
sumes 96 bits truncation. The kernel developers never
fixed this obvious bug to keep compatibility with
one or two other implementations that use the pre-
standard version. They refer to the “XFRM” API that
allows to set the algorithm, and the key and truncation
lengths individually.

4.4 User-friendly GUI

There is actually no need to use a GUI to set up gate-
way to gateway connections. The configuration file,
iked.conf, uses a well-defined grammar that is easy
to understand for system administrators and most
users of OpenIKED . But when connecting mobile
users, or road warriors, to the gateway, an easy GUI
is an important requirement for deploying the VPN.
These users are most commonly non-technical laptop
users that connect to a VPN gateway of their orga-
nization, university or company. It is most desirable
that they can set up and debug the client-side of the
VPN connection without much interaction from the
IT department.

Microsoft Windows

Microsoft Windows 7 introduced an integrated IKEv2
client configuration dialog that is surprisingly easy to
use for standard users. The configuration of tradi-
tional IPsec/IKE used to be very difficult under Win-
dows but the IKEv2 client only requires installing the
required certificates, setting the remote gateway ad-
dress, and specifying a user name and password for
additional EAP-MSCHAPv2 authentication. And of
course, OpenIKED is a compatible gateway that can
be used with the built-in Windows client.

OpenIKED.app

To get a similar level of IKEv2 user-friendliness on
OS X, I started working on a simple GUI that is in-

spired by the Windows client. Accordingly, the goal
is to provide a very simple tool that allows to set up
IKEv2 client connections from Mac-based road war-
riors. The dynamic negotiation of IKEv2 and the se-
cure defaults of OpenIKED allows to reduce the re-
quired configuration settings to the minimum on the
client side: remote gateway address and optional con-
nection name. Other optional settings can be config-
ured in the ”Details” tab. In difference to the Win-
dows client, additional user-based authentication is
currently not supported as EAP-based authentication
is only implemented for the server (responder) side.

The current version is a working proof of concept
that requires manual installation of keys and certifi-
cates into the configuration directory.

4.5 The Artwork

OpenBSD and its subprojects aren’t just known for
security, they’re also known for their comic-style art-
work. Each of these projects has a theme that is
including the OpenBSD-styled logo and “Puffy” the
pufferfish in some action. The artwork is used on T-
Shirts, posters and CD covers and was originally de-
signed by the Canadian artist Ty Semaka and some
other artists today.

When I decided to turn iked into a portable project,
it was clear that I needed a matching artwork. I had
the idea of using a “tin can telephone” as a theme that
represents VPN communication in an obscure way.

But I needed an artist to create a real Puffy theme
and found Markus Hall from Sweden who kindly de-
signed the logo and artwork for OpenIKED . He also
contributed the idea that puffy is talking to the cute
blue pufferfish girl over the tin can phone.

5 Appendix

5.1 About the Author

Reyk Floeter[1] works as a freelance consultant and
software developer with a focus on OpenBSD, net-
working, and security. He lives in Hannover, Ger-
many, but works with international customers like IIJ
in Tokyo. As a member of the OpenBSD project, he
contributed various features, fixes, networking drivers
and daemons since 2004, like OpenBSD’s ath, trunk,
vic, hostapd, relayd, snmpd, and iked. For more than
nine years and until mid-2011, he was the CTO &
Co-Founder of .vantronix where he gained experience
in building, selling and deploying enterprise-class net-
work security appliances based on OpenBSD.

References

[1] Reyk Floeter, Reyk Floeter Consulting, http://
www.reykfloeter.com/.

[2] FreeBSD, VPN over IPsec, http://www.

freebsd.org/doc/en_US.ISO8859-1/books/

handbook/ipsec.html.

[3] Dan Harkins and Dave Carrel, RFC 2409 -
The Internet Key Exchange (IKE), http://www.
ietf.org/rfc/rfc2409.txt, November 1998.

[4] KAME, The KAME Project, http://www.kame.
net/, April 1998.

[5] Charlie Kaufman, Paul Hoffman, Yoav Nir, and
Parsi Eronen, RFC 5996 - Internet Key Exchange
Protocol Version 2 (IKEv2), http://www.ietf.
org/rfc/rfc5996.txt, September 2010.

[6] Scott Kelly and Sheila Frankel, RFC 4868 -
Using HMAC-SHA-256, HMAC-SHA-384, and
HMAC-SHA-512 with IPsec, http://www.ietf.
org/rfc/rfc4868.txt, May 2007.

[7] MacPorts, The MacPorts Project, http://www.

macports.org.

[8] Douglas Maughan, Mark Schertler, Mark Schnei-
der, and Jeff Turner, RFC 2408 - Internet Se-
curity Association and Key Management Pro-
tocol (ISAKMP), http://www.ietf.org/rfc/

rfc2408.txt, November 1998.

[9] Daniel McDonald, Craig Metz, and Bao
Phan, RFC 2367 - PF KEY Key Management
API, Version 2, http://www.ietf.org/rfc/

rfc2367.txt, July 1998.

[10] Damien Miller, Secure Portability, http://www.
openbsd.org/papers/portability.pdf, Octo-
ber 2005.

[11] NetBSD, Configuring IPsec kernel, http:

//www.netbsd.org/docs/network/ipsec/

#config_kernel.

[12] OpenBSD, style(9) - Kernel source file style guide
(KNF), http://www.openbsd.org/cgi-bin/

man.cgi?query=style.

[13] , The OpenBSD Project, http://www.

openbsd.org/.

[14] , The OpenIKED Project, http://www.

openiked.org/.

[15] , The OpenSMTPD Project, http://www.
opensmtpd.org/.

[16] OpenSSL, The OpenSSL Project, http://www.

openssl.org.

[17] Derrell Piper, RFC 2407 - The Internet IP
Security Domain of Interpretation for ISAKMP,
http://www.ietf.org/rfc/rfc2407.txt,
November 1998.

[18] Niels Provos, Markus Friedl, and Peter
Honeyman, Preventing Privilege Escalation,
http://www.citi.umich.edu/u/provos/

papers/privsep.pdf, August 2003.

[19] Niels Provos and Nick Mathewson, libevent - an
event notification library, http://libevent.org.

http://www.reykfloeter.com/
http://www.reykfloeter.com/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ipsec.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ipsec.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ipsec.html
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc2409.txt
http://www.kame.net/
http://www.kame.net/
http://www.ietf.org/rfc/rfc5996.txt
http://www.ietf.org/rfc/rfc5996.txt
http://www.ietf.org/rfc/rfc4868.txt
http://www.ietf.org/rfc/rfc4868.txt
http://www.macports.org
http://www.macports.org
http://www.ietf.org/rfc/rfc2408.txt
http://www.ietf.org/rfc/rfc2408.txt
http://www.ietf.org/rfc/rfc2367.txt
http://www.ietf.org/rfc/rfc2367.txt
http://www.openbsd.org/papers/portability.pdf
http://www.openbsd.org/papers/portability.pdf
http://www.netbsd.org/docs/network/ipsec/#config_kernel
http://www.netbsd.org/docs/network/ipsec/#config_kernel
http://www.netbsd.org/docs/network/ipsec/#config_kernel
http://www.openbsd.org/cgi-bin/man.cgi?query=style
http://www.openbsd.org/cgi-bin/man.cgi?query=style
http://www.openbsd.org/
http://www.openbsd.org/
http://www.openiked.org/
http://www.openiked.org/
http://www.opensmtpd.org/
http://www.opensmtpd.org/
http://www.openssl.org
http://www.openssl.org
http://www.ietf.org/rfc/rfc2407.txt
http://www.citi.umich.edu/u/provos/papers/privsep.pdf
http://www.citi.umich.edu/u/provos/papers/privsep.pdf
http://libevent.org

	Introduction
	Background & History
	Why another VPN protocol?
	An overview of VPN protocols
	SSL-VPN
	OpenVPN
	IPsec

	VPN protocols in OpenBSD
	npppd, PPTP and L2TP
	isakmpd and IKE

	Internet Key Exchange version 2
	Changes in IKEV2

	Design & Implementation
	Project Goals
	Lean:
	Clean:
	Secure:
	Interoperable:
	Configurable:

	Strong Crypto

	iked(8)
	Example Configuration
	Privilege Separation Model
	parent
	ca
	ikev2
	ikev1
	ikectl

	ikectl(8) CA

	Portable version
	OpenBSD's Portability Approach
	The Portable OpenIKED Project
	Supported Operating Systems
	Apple OS X (Darwin)
	NetBSD & FreeBSD
	DragonflyBSD
	GNU/Linux

	User-friendly GUI
	Microsoft Windows
	OpenIKED.app

	The Artwork

	Appendix
	About the Author

