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ABSTRACT

This paper examines several security measures that have
been implemented in OpenSSH. OpenSSH’s popularity,
and the necessity for the server to wield root privileges,
have made it a high-value target for attack. Despite initial
and ongoing code audits, OpenSSH has suffered from a
number of security vulnerabilities over its 7.5 year life.
This has prompted the developers to implement several
defensive measures, intended to reduce both the likeli-
hood of exploitable errors and the consequences of ex-
ploitation should they occur.

This paper examines these defensive measures; each
measure is described and assessed for implementation ef-
fort, attack surface reduction, effectiveness in preventing
or mitigating attacks, applicability to other network soft-
ware and possible improvements.
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1 Introduction

OpenSSH [22] is a popular implementation of the SSH
protocol [32]. It is a network application that supports
remote login, command execution, file transfer and for-
warding of TCP connections between a client and server.
It is designed to be safely used over untrusted networks
and includes cryptographic authentication, confidential-
ity and integrity protection.

Since its release in 1999, OpenSSH quickly gained
popularity and rapidly became the most popular SSH im-

plementation on the Internet [23]. Today it is installed
by default on almost all modern Unix and Unix-like op-
erating systems, as well as many network appliances and
embedded devices.

OpenSSH is has been developed to run on Unix-like
operating systems and must operate within the traditional
Unix security model. Notably, the OpenSSH server,
sshd, requires root privileges to authenticate users, ac-
cess the host private key, allocate TTYs and write records
of logins. OpenSSH is also based on a legacy code-base,
that of ssh-1.2.16 [33]

OpenSSH’s popularity, and the knowledge that a suc-
cessful compromise gives an attacker a chance to gain
super-user privileges on their victim’s host has made it
an attractive target for both research and attack. Since its
initial release in 1999, a number of security bugs have
been found in OpenSSH. Furthermore some of the li-
braries that OpenSSH depends on have suffered from
bugs that were exposed through OpenSSH’s use of them.

Some of these errors have been found despite
OpenSSH being manually audited on several occasions.
This, and the occurrence of vulnerabilities in depen-
dant libraries, have caused the developers to implement
a number of proactive measures to reduce the likelihood
of exploitable errors, make the attacker’s work more dif-
ficult and to limit the consequences of a successful ex-
ploit. These measures include replacement of unsafe
APIs, avoidance of complex or error-prone code in de-
pendant libraries, privilege separation of the server, pro-
tocol changes to eliminate pre-authentication complexity
and a mechanism to maximise the benefit of OS-provided
attack mitigation measures.

A key consideration in implementing these measures
has been their effect on reducing OpenSSH’s attack sur-
face. Attack surface [17] is a qualitative measure of an
application’s “attackability” based on the amount of ap-
plication code exposed to an attacker. This quantity is
scaled by the ease with which an attacker can exercise
the code – for example, code exposed to unauthenticated



users would be weighted higher than that accessible only
by authenticated users. A further weighting is given to
code that holds privilege during its execution, as an at-
tacker is likely to inherit this privilege in the event of
a successful compromise. Attack surface may therefore
be considered as a measure of how well developers have
applied Saltzer and Schroeder’s Economy of Mechanism
and Least Privilege design principles [7].

This paper examines these security measures in
OpenSSH’s server daemon, sshd. Each measure is con-
sidered for implementation ease, applicability to other
network applications, attack surface reduction, actual at-
tacks prevented and possible improvements.

2 Critical vulnerabilities

Table 1 lists and characterises several critical vulnerabil-
ities found in OpenSSH since 1999. We consider a vul-
nerability critical if it has a moderate to high likelihood
of successful remote exploitation.

File Problem Found
session.c sanitisation error Friedl, 2000 [15]
deattack.c integer overflow Zalewski, 2001 [18]
radix.c stack overflow Fodor, 2002 [11]
channels.c array overflow Pol, 2002 [8]
auth2-chall.c array overflow Dowd, 2002 [12]
buffer.c integer overflow Solar Designer, 2003 [13]
auth-chall.c logic error OUSPG, 2003 [21]

Table 1: Critical vulnerabilities in OpenSSH
OpenSSH has also been susceptible to bugs in li-

braries it depends on. Over the same period, zlib [9] and
OpenSSL [24] have suffered from a number of vulnera-
bilities that could be exploited through OpenSSH’s use
of them. These include heap corruption [14] and buffer
overflows [27] [16] in zlib, and multiple overflows in the
OpenSSL ASN.1 parser [20].

Note that many of these vulnerabilities stem from
memory management errors. It follows that measures
that reduce the likelihood of memory management prob-
lems occurring, or that make their exploitation more dif-
ficult are likely to yield a security benefit.

3 OpenSSH security measures

OpenSSH will naturally have a raised attack surface be-
cause of its need to accept connections from unauthen-
ticated users, while retaining the root privileges it needs
to record login and logout events, open TTY devices and
authenticate users.

The approaches used to reduce this attack surface or
otherwise frustrate attacks generally fall into the follow-
ing categories: defensive programming, avoiding com-
plexity in dependant libraries, privilege separation and

better use of operating system attack mitigation mea-
sures.

3.1 Defensive programming

Defensive programming seeks to prevent errors through
the insertion of additional checks [29]. An expansive in-
terpretation of this approach should also include avoid-
ance or replacement of APIs that are ambiguous or dif-
ficult to use correctly. In OpenSSH’s case, this has in-
cluded replacement of unsafe string manipulation func-
tions with the safer strlcpy and strlcat [30] and
the replacement of the traditional Unix setuid with the
less ambiguous [2] setresuid family of calls.

A source of of potential errors may be traced to
POSIX’s tendency to overload return codes; using -1
to indicate an error condition, but zero for success and
positive values as a result indicator (a good example of
this is the read system call). This practice leads to
a natural mixing of unsigned and signed quantities, of-
ten when dealing with I/O. Integer wrapping and signed-
vs-unsigned integer confusion have caused a number of
OpenSSH security bugs, so this is of some concern.
OpenSSH performs most I/O calls through a “retry on
interrupt” function, atomicio. This function was mod-
ified to always return an unsigned quantity and to instead
report its error via errno. Making this API change did
not uncover any bugs, but reducing the need to use signed
types it made it easier to enable the compiler’s signed/un-
signed comparison warnings and fix all of the issues that
it reported.

Integer overflow errors are often found in dynamic
array code. A common C language idiom is to
allocate an array using malloc or calloc, but
attacker-controlled arguments to these functions may
wrap past the maximum expressible size_t, result-
ing in an exploitable condition [1]. malloc and
array resizing using realloc are especially prone
to this, as their argument is often a product, e.g.
array = malloc(n * sizeof(*array)).

OpenSSH replaced all array allocations with an error-
checking calloc variant (derived from the OpenBSD
implementation) that takes as arguments a number of
elements to allocate and a per-element size in bytes.
These functions check that the product of these quan-
tities does not overflow before performing an alloca-
tion. The realloc function, which has no calloc-like
counterpart in the standard library (i.e. accepting argu-
ments representing a number of elements and an element
size), was replaced with a calloc-like error-checking ar-
ray reallocator. Implementing this change added only
17 lines of code to OpenSSH, but has not yet uncovered
any previously-exploitable overflows. A similar change
was subsequently made to many other programs in the



OpenBSD source tree.
Once valid criticism of API replacements is that they

make a program more difficult to read by an new de-
veloper, as they must frequently recurse into unfamil-
iar APIs. In OpenSSH’s case, effort has been made to
use standardised APIs as replacements wherever possi-
ble as well as using logical and consistent naming for
non-standard replacements (e.g. calloc→ xcalloc)

3.2 Avoiding complexity in dependant li-
braries

Significant complexity, and thus attack surface, can lurk
behind simple library calls. If there is sufficient risk, it
may be worthwhile to replace them with more simple, or
limited versions. Replacing important API calls is not
without risk or cost; it represents additional development
and maintenance work and it provides the opportunities
for new errors to be made in critical code-paths. If re-
placement is considered to risky, simply avoiding the call
may still be an option – OpenSSH avoids the use of reg-
ular expression libraries for this reason.

An example of this approach is OpenSSH’s replace-
ment of RSA and DSA cryptographic signature veri-
fication code. Prior to late 2002, OpenSSH used the
OpenSSL RSA_verify and DSA_verify functions
to verify signatures for user- and host-based public-key
authentication. The OpenSSL implementations use a
general ASN.1 parser to unpack the decrypted signature
object. This adds substantial complexity – in the case of
RSA_verify at least 282 lines of code, not including
calls to the raw OpenSSL cryptographic primitives, or its
custom memory allocation, error handling and binary I/O
functions.

These calls were replaced with minimal implemen-
tations that avoided generic ASN.1 parsing in favour
of a simple comparison of the structure of the de-
crypted signature to an expected form. The replacement
openssh_RSA_verify function was implemented in
63 lines of code, of much simpler structure (basically de-
crypt then compare) and with no calls to complex subrou-
tines other than the necessary cryptographic operations.

The replacement functions clearly reduce the attack
surface of public key authentication in OpenSSH and
have avoided a number of critical bugs in the OpenSSL
implementations, notably an overflow in the ASN.1 pars-
ing [20] and a signature forgery bug [3], both of which
were demonstrated to be remotely exploitable.

3.3 Protocol changes to reduce attack sur-
face

The SSH protocol includes a compression facility that
is intended to improve throughput over low-bandwidth

links. Compression is negotiated during the initial key
exchange phase of the protocol and activated, along with
encryption and message authentication, as soon as the
key exchange has finished. The next phase of the proto-
col is user authentication, but by this time compression is
already enabled and any bugs in the underlying zlib code
have been exposed to an unauthenticated attacker.

OpenSSH introduced a new compression method
zlib@openssh.com [5] as a protocol extension (the SSH
protocol has a nice extension mechanism that allows the
use of arbitrary extension method names under the devel-
oper’s domain name – unadorned names are reserved for
standardised protocol methods). The zlib@openssh.com
compression method uses exactly the same underlying
compression algorithm (zlib’s deflate), it merely delays
its activation until successful completion of user authen-
tication. This eliminates all zlib exposure to unauthenti-
cated users.

An alternate solution to this problem that does not re-
quire a protocol change is to refuse compression in the
initial key exchange proposal, but then offer it in a re-
exchange immediately after user authentication has com-
pleted. This approach was rejected, as key exchange is
a heavyweight operation in the SSH protocol; usually
consisting of a Diffie-Hellman [4] key agreement with a
large modulus. Performing a re-exchange to effectively
flip a bit was considered too expensive.

The benefit of delayed compression is clear, despite
there not having been any zlib vulnerabilities published
since it was implemented. Network application develop-
ers considering making non-standard protocol changes
to reduce attack surface should consider interoperability
carefully, especially if the protocol they are implement-
ing lacks a orthogonal extension mechanism like SSH’s.

3.4 Privilege separation

[Privilege separation in OpenSSH is described in detail
in [25], this is a brief summary].

The design principle of Least Privilege [7] requires
that privilege be relinquished as soon as it is no longer
required, but what should application developers do in
cases where privilege is required sporadically through an
applications life? sshd is such an application; it must re-
tain root privileges after the user has authenticated and
logged in as it needs to record login and logout records
and allocate TTYs. Furthermore the SSH protocol allows
multiple sessions over a single SSH transport and these
sessions may be started any time after user authentication
is complete.

OpenSSH 3.3 implemented privilege separation (a.k.a
privsep), where the daemon is split into a privileged
monitor and an unprivileged slave process. Before au-
thentication (pre-auth), the slave runs as a unique, non-



privileged user. After authentication (post-auth) the slave
runs with the privileges of the authenticated user. In all
cases, the slave process is jailed (via the chroot system
call) into an empty directory, typically /var/empty.

The slave is responsible for the SSH transport, in-
cluding cryptography, packet parsing and managing open
“channels” (login sessions, forwarded TCP ports, etc.).
When the slave needs to perform an action that requires
privilege, or any interaction with the wider system, it
messages the monitor, which performs the requested ac-
tion and returns the results.

The monitor is structured as a state-machine, enforc-
ing constraints over which actions a slave may request
at its stage in the protocol (e.g. opening login ses-
sions before user authentication is complete is not per-
mitted). The monitor is intended to be as small (code-
wise) as possible; the initial implementation removed
privilege from just over two thirds of the OpenSSH ap-
plication [25].

OpenSSH’s privsep implementation is complicated
somewhat by the need to offer compression before au-
thentication. Once user authentication is complete, the
pre-auth slave must serialise and export its connection
state for use by the post-auth slave, including crypto-
graphic keys, initialisation vectors (IVs), I/O buffers and
compression state. Unfortunately the zlib library of-
fers no functions to serialise compression state. How-
ever it does support allocation hooks that it will use
instead of the standard malloc and free functions.
OpenSSH’s privsep includes a memory manager that is
used by zlib. This manager uses anonymous memory
mappings that are shared between the pre-auth slave and
the monitor. The post-auth slave inherits this memory
from the monitor when it is started. Since the monitor
treats these allocations as completely opaque and never
invokes zlib functions, there is no risk of monitor com-
promise through deliberately corrupted zlib state.

The OpenSSH privsep implementation builds the
monitor and both the pre- and post-authentication slaves
into the one executable. This may be contrasted with
the Postfix MTA [31], which uses separate cooperat-
ing executables that run at various privilege levels. The
OpenSSH implementation could probably be simplified
if the monitor were split into a dedicated executable that
in turn executed separate slave executables. An addi-
tional benefit to this model would be the slaves would no
longer automatically inherit the same address space lay-
out as the monitor (further discussed in section 3.5), but
it would carry some cost: it would no longer be possible
to disable privsep, and it would be impossible to sup-
port the standard compression mode though the above
shared memory allocator – zlib would have to be modi-
fied to allow state export, or pre-authentication compres-
sion would have to be abandoned.

Another criticism [19] of OpenSSH’s privsep imple-
mentation is that it uses the same buffer API as the slave
to marshal and unmarshal its messages. This renders the
monitor susceptible to the same bugs as the slave if they
occur in this buffer code (one such bug has already oc-
curred [13]). However, the alternative of reimplement-
ing the buffer API for the monitor is not very attractive
either; maintaining two functionally identical buffer im-
plementation raises the attack surface for questionable
benefit. A better approach may be to automatically gen-
erate the marshalling code (discussed further in section
4).

Privilege separation in OpenSSH has been a great suc-
cess; it has reduced the severity of all but one of the
memory management bugs found in OpenSSH since its
implementation, and the second layer of checking that
the privsep monitor state machine offers has prevented
at least one logic error in the slave from being exploited.
It has suffered from only one known bug, that was not
exploitable without first having compromised the slave
process. OpenSSH is something of a worst-case in terms
of the complexity required to implement privilege sepa-
ration, other network applications seeking to implement
it will likely find it substantially easier.

3.5 Assisting OS-level attack mitigation

Modern operating systems are beginning to implement
attack mitigation measures [28] intended to reduce the
probability that a given attack will succeed. These mea-
sures include stack protection as well as a suite of run-
time randomisations that are applied to stack gaps, exe-
cutable and library load addresses, as well as to the ad-
dresses returned by memory allocation functions. Col-
lectively, these randomisations (often referred to as Ad-
dress Space Layout Randomisation – ASLR) render use-
less any exploits that use fixed offsets or return addresses.

These randomisations are typically applied per-
execution, as it would be very difficult to otherwise
re-randomise an application’s address space at runtime.
Stack protectors such as SSP/Propolice [6] also employ
random “canaries” that are initialised per-execution.

A typical Unix daemon that forks a subprocess to ser-
vice each request will inherit the address space layout
of its parent. In the absence of other mitigation mea-
sures, an attacker may therefore perform an exhaustive
search, trying every possible offset or return address un-
til they find one that works. They will be guaranteed
success, as there is a finite and unchanging space of pos-
sible addresses (as little as 16-bits in some implementa-
tions [26]).

To improve this situation, OpenSSH implemented
self-re-execution. sshd was modified to fork, then exe-
cute itself to service each connection rather than simply



forking. Each daemon instance serving a connection is
therefore re-randomised, approximately doubling the ef-
fort required to guess a correct offset and removing any
absolute guarantee of success.

This change, while straightforward to implement, does
incur some additional overhead for each connection, and
has been criticised as offering little benefit on systems
that do not support any ASLR-like measures.

4 Future directions

There are several opportunities to further improve
OpenSSH’s security and attack resistance. Perhaps the
most simple is to disable or deprecate unsafe or seldom-
used protocol elements. Removing support for pre-
authentication compression (once a delayed compres-
sion method is standardised) would permanently remove
complexity and significantly simplify the privilege sep-
aration implementation. Likewise, deactivating and ul-
timately removing support for the legacy SSH protocol
version 1 would remove a lot of complexity from the
code (and may hasten the demise of a protocol with
known weaknesses).

Further attack resistance may be gained by including
measures to frustrate return-to-executable attacks, where
the attacker sets up a stack frame with controlled ar-
guments and then returns to a useful point inside the
currently executing process. In OpenSSH’s case, they
may select the do_exec function, that is responsible for
spawning a subshell as part of session creation. These at-
tacks may be made more difficult by pervasively insert-
ing authentication checks into code that has the potential
to be subverted. However these checks have the potential
to bloat and obfuscate the code and their effectiveness at
preventing this attack is not entirely clear.

Improved attack resistance could also be achieved by
having the listener sshd process check the exit status of
the privsep monitor and (indirectly) slave processes. If
an abnormal exit status is detected, such as a forced ter-
mination for a segmentation violation, then the listener
could take remedial action such as rate-limiting similar
connections as defined by a (source address, username)
tuple. This would work especially well on operating sys-
tems that support ASLR – exploits will be nondetermin-
istic on these platforms, and an attacker will be forced to
make many connections to find working offsets. Attacks
may be rendered infeasible or unattractive by limiting the
rate at which these attempts can be made. This concept
could be extended to form the basis of a denial of service
mitigation, where the listener could impose a rate-limit
on connections from hosts that repeatedly fail to authen-
ticate within the login grace period, or that experience
frequent login failures.

Another potential approach to reducing errors is to

generate mechanical parts of the source automatically.
Packet parsers are an excellent candidate for automatic
generation, and this technique is used by many RPC im-
plementations and at least one SSH implementation al-
ready [10]. The channel and privilege separation state-
machines could also be represented at a higher level, al-
lowing easier verification.

5 Conclusion

Network software that accepts data from unauthenticated
users while requiring privilege to operate presents a sig-
nificant security challenge to the application developer.
This paper has described the OpenSSH project’s ap-
proach to this problem, has detailed a number of specific
measures that have been implemented and explored areas
of possible future work.

These measures focus on reducing the attack surface
of the application and making better use of any attack
mitigation facilities provided by the underlying operat-
ing system. They have been shown to be effective in
stopping exploitable problems occurring or in reducing
their impact when they do occur. Finally, these measures
have been shown to be relatively easy to implement and
widely applicable to other network software
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