
Secure Portability

Damien Miller (djm@mindrot.org)

October 2005

Abstract
This paper introduces the issues of portability for C applications between Unix

variants, including semantic differences in libraries and system calls, API support
and reasonable minimum platform requirements. It also describes the approach used
by Portable OpenSSH to the problems of secure portability and points to some areas
where more work is needed by platform vendors.

1 Introduction

This paper introduces issues of portability for C applications on Unix, GNU/Linux and
Windows/cygwin platforms, including semantic differences in libraries and system calls,
API support and reasonable minimum platform requirements. It also describes the ap-
proach used by Portable OpenSSH [16] to the problems of secure portability. Finally it
points to some areas where more work is needed by platform vendors.

Software running on modern Unix-like systems must deal with innumerable differences in
libraries and in system behaviour. Significant differences are evident even between the
various GNU/Linux distributions. This variance ranges from the trivial, such as differ-
ing filesystems layouts, though to the complex, such as platform-specific authentication
methods or differences in system call semantics.

Coping with these differences adds complexity to applications, making them more difficult
and much less enjoyable to develop and verify. Some of these differences have serious secu-
rity implications and the additional complexity required to cope with them also increases
the likelihood of security problems. Another confounding factor is that the best APIs
(from a security perspective) do not have wide platform support, indeed some platform
maintainers have actively militated against their adoption.

2 Approaching Portability

Some projects include portability as an original, explicit requirement or goal, but the
majority of software packages are not written to be portable. Rather, they have portability

1

incrementally added after the software has been developed on an original “golden” platform
(usually either an explicit target platform, or whatever the developer likes or has available).
This is not necessarily a bad thing - it provides a reference against which the correct
operation of other platforms can be measured.

In the case of OpenSSH, the original platform was OpenBSD, though some portability
code from the legacy ssh-1.2.x code-base was retained. OpenSSH differs from many other
software projects in its separation into “core” and “portable” versions. The OpenBSD
developers want a clean code-base, free of portability clutter as the canonical home for
OpenSSH is their CVS tree. The portable version of OpenSSH is maintained by a semi-
separate team of developers in a separate CVS tree. This arrangement creates some extra
work, as changes to the core version must be periodically merged, but automated tools
render this process trivial and the existence of the OpenBSD version has proved useful
many times in determining whether bugs in the core product, the portability code or the
new target platform. Table 1 lists the platforms that are supported by portable OpenSSH.

AIX DragonflyBSD QNX
Apple MacOS X HP/UX 10.x, 11.x SCO OpenServer 5
BSDi Irix 5.x, 6.x SCO Unixware
Cray Unicos Linux SNI ReliantUNIX
Cygwin LynxOS Solaris 2.6, 7, 8, 9, 10
DEC OSF/1 NCR SVR4 MP-RAS Sony NewsOS BSD
DGUX NeXTSTEP SunOS 4
Darwin NetBSD Ultrix
FreeBSD OpenBSD

Table 1: Platforms supported by portable OpenSSH

Most software projects, however, maintain a single version that supports multiple plat-
forms, usually with some leaning towards a favourite (e.g. most recent free software projects
implicitly prefer GNU/Linux). In either case, portability becomes an issue when developers
encounter a difference between platforms.

At this point, it is worthwhile to consider some goals of portability. The prime objective is
to have the software carry out its desired function(s) on the desired platforms. However,
there are several less obvious goals:

1. To retain readability of the code

2. To ensure that the software behaves similarly on different platforms (including avoid-
ing the introduction of platform-specific bugs)

3. To facilitate the addition of support for new platforms

4. To minimise maintenance costs for developers of the software

2

5. To minimise support costs from users of the software

Achieving one of these goals should not involve trading off against the others. Indeed,
focusing on the prime objective generally makes the others much easier to achieve, though
it may require a little more up-front effort. In addition, porting software can expose hidden
assumptions and bugs that may only occur rarely on the base platform, finding and fixing
these issues improves software quality as a whole.

3 Platform differences

Differences between Unix and Unix-like platforms are far less painful today than they were
a decade, or even five years ago. Beyond differing endianness and word sizes, hardware
differences are largely transparent to the modern developer. Likewise C compilers are
generally feature-compatible, with the major difference being the command line options
required to compile and link a program. System libraries are largely standardised and tend
to include popular functions, regardless of the lineage of the particular platform.

Spare a thought for the brave developers of twenty years ago who had to contend with
differences at every level [9]: in the C compiler and tool-chain (still in a state of flux), in
the network stack (changing as the TCP/IP protocols were refined), in an OS still in a
stage of rapid evolution and in strange (by today’s standards) features and limitations of
the underlying hardware that were not abstracted away by the underlying OS.

However, portability issues remain; platforms are by no means homogenous. Deep differ-
ences, including subtle but critical differences in semantics exist between some systems.
New APIs are being added frequently to both free and proprietary operating systems.

3.1 Trivial differences

Most platform related differences are trivial in nature. Table 2 mentions several of this
nature and basic ways to deal with them. While these issues do not pose much of a
problem to an aware developer, they can become more tricky to deal with through their
composition.

3.1.1 Use of the C preprocessor

While the trivial differences are relatively easy to work around they can, because of the
frequency of their occurrence, also be the ones that pose the greatest threat to readability
of source code. Despite strong recommendations to the contrary [18], an all-too-common
approach to fixing these differences is the liberal use of preprocessor directives to create
an in-line replacement.

3

Problem Solution
Differing system integer byte
orders (endianness)

Use POSIX ntohl, ntohs, htonl, htons functions to con-
vert

Different word sizes (e.g. of
the int type)

Use width specified types, such as int32 t where word
size matters

Missing type definitions (e.g.
u int32 t)

Include replacement definitions in header file

Missing functions (e.g. dae-
mon, strlcpy)

Include portable replacements

Different underlying integer
types for OS provided types,
e.g. uid t

Cast to wider type in printf, avoid direct use as ar-
ray index or in pointer arithmetic (avoiding signed vs.
unsigned bugs)

Table 2: Some common trivial platform differences

These inline replacements have a tendency to multiply, leading to a maze of platform-
specific code wrapped up in deeply nested pre-processor logic. For example, listing 1
shows a section of ntpd’s [14] startup code where the simple action of becoming a daemon
has been rendered nearly unreadable by a maze of compatibility fall-backs.

A far better approach for situations like this is to provide a replacement for the missing
API (daemon() in this case) and to include it in a compatibility library. This clears the
main code paths of inessential clutter, thereby making them far easier to read and follow.
Removing the clutter is also conducive to better security by making it easier to audit for
problems.

By locating the replacement function in a compatibility library, it will be available to every
discrete program in the software distribution, obviating the need for each to implement
its own replacement. This approach should be recursively applied to the compatibility
functions too - merely refactoring the previous example into a daemon() function in a
separate file doesn’t produce the full benefit unless the whole tangle is unwound.

Of course, some preprocessor is almost always required - the goal is to avoid nesting it,
which leads to an exponential growth in the number of paths through the code. As a rule,
consider breaking code out whenever there is a need for more than one level of preprocessor
nesting.

In many cases, an even more simple solution to the issue of replacing missing functions
exists: import or adapt code from one of the BSD operating systems. The BSD code is well
written, released under a liberal licence intended to facilitate exactly this type of reuse and
is standard (for many functions it is the original and canonical implementation). Another
major benefit is that this code is actively maintained, thus saving effort for application
developers who integrate it. Portable OpenSSH makes extensive use of OpenBSD’s stan-
dard library code to supplement missing or broken implementations of functions on other
platforms.

4

This approach of direct replacement works well for platform functions, types and pre-
processor defines that are missing, but it can be difficult to replace a platform supplied
function that is broken. Prototypes for various functions differ between systems and,
unless the application developer is willing to ship multiple prototypes for the replacement
functions, it is impossible to make them work across all the necessary platforms. One such
case is the RFC 3493 [6] address-family independent host and address lookup routines.
Several platforms have shipped incomplete or buggy implementations of these routines
that needed to be worked around, but direct replacements ran into the problems described
above. The solution used by portable OpenSSH is to use the pre-processor to internally
rename the functions to point to internal replacements (as shown in Listing 2). This
approach is slightly ugly, in that it renames a system provided API. Another solution
would be to introduce a wrapper API, but this would sacrifice some readability for the
vast majority of systems where these functions work correctly.

ifdef HAVE_DAEMON

daemon(0, 0);

else /* not HAVE_DAEMON */

if (fork()) /* HMS: What about a -1? */

exit(0);

{

#if !defined(F_CLOSEM)

u_long s;

int max_fd;

#endif /* not F_CLOSEM */

#if defined(F_CLOSEM)

/*

* From ’Writing Reliable AIX Daemons,’ SG24-4946-00,

* by Eric Agar (saves us from doing 32767 system

* calls)

*/

if (fcntl(0, F_CLOSEM, 0) == -1)

msyslog(LOG_ERR, "ntpd: failed to close open files(): %m");

#else /* not F_CLOSEM */

if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)

max_fd = sysconf(_SC_OPEN_MAX);

else /* HAVE_SYSCONF && _SC_OPEN_MAX */

max_fd = getdtablesize();

endif /* HAVE_SYSCONF && _SC_OPEN_MAX */

for (s = 0; s < max_fd; s++)

(void) close((int)s);

#endif /* not F_CLOSEM */

(void) open("/", 0);

(void) dup2(0, 1);

(void) dup2(0, 2);

#if defined(HAVE_SETPGID) || defined(HAVE_SETSID)

ifdef HAVE_SETSID

if (setsid() == (pid_t)-1)

msyslog(LOG_ERR, "ntpd: setsid(): %m");

else

if (setpgid(0, 0) == -1)

msyslog(LOG_ERR, "ntpd: setpgid(): %m");

endif

#else /* HAVE_SETPGID || HAVE_SETSID */

Listing 1: excerpt from ntp-stable-4.2.0a-20050303 ntpdmain() function

5

#ifndef HAVE_GETNAMEINFO

#define getnameinfo(a,b,c,d,e,f,g) (ssh_getnameinfo(a,b,c,d,e,f,g))

int getnameinfo(const struct sockaddr *, size_t, char *, size_t,

char *, size_t, int);

#endif /* !HAVE_GETNAMEINFO */

Listing 2: avoiding a buggy system-provided function

3.1.2 Activating replacements

Once a replacement function has been written or imported, the developer is now faced with
another question: how is this replacement triggered? There are several popular approaches
to this, each involving some tradeoffs.

The most simple way to trigger platform-specific replacements is to use pre-processor def-
initions set by the user. These usually appear either in a Makefile or some configuration
header. While this is very easy for the developer, it can be confusing for non-technical users
and therefore likely to increase the number of support requests if the software is shipped
as source code, though grouping together coherent sets of options by platform can reduce
this burden. Another problem is that it can be difficult to manually maintain the list of
definitions as the software grows more complex. If there are only a handful of defines, then
this may be a useful solution for very small software packages.

This method can be trivially automated using the pre-processor definitions set by the
compiler or system include files. For example, #if defined(OpenBSD)). This improves
over the previous technique in that it needs no end user adjustment for the common cases.
It is also easy for the developer: understanding which sets of options are set on a platform
simplifies debugging. Unfortunately this method tends to become unwieldy when many
platforms are added. It also fails to detect variants of a single OS, e.g. differences between
Linux distributions.

A better approach is to provide pre-configured sets of consistent options in the build
infrastructure (e.g. Makefiles, automatically selected by system architecture, OS and/or
the user. A good example of this is the imake [5] system used by X11R6 and its set of
per-platform definitions files. Again, this is simple for the user, so long as they fall into
the set of provided platforms and offers determinism for the developer. Supporting the
software on a new platform, or variant of an existing one does take some developer time.

Perhaps the most common approach today is to automatically detect platform characteris-
tics by running compile-time tests, à la GNU autoconf [11], though this approach predates
autoconf by many years [18]. This is simple and automatic for the user, and the same
system can provide a standard and user-friendly way of making other compile-time cus-
tomisations, such as selecting installation paths. This approach also offers a reasonable
chance that the software will work unmodified on new platforms or on variants of existing
platforms, thereby reducing support requirements. The big problem with this method is
that it makes it difficult for the developer to ascertain the exact configuration parameters
selected on a given system, if they don’t have direct access to it. This makes debugging

6

quite a bit more difficult in these cases. Also, the most popular tool (GNU autoconf) is
somewhat fragile and therefore can be a source of complexity in itself, though this is not
an inherent problem of the approach.

Most free software projects use either of the last two methods, or a combination of both.
Portable OpenSSH uses a combination, by way of GNU autoconf: compile-time tests where
possible, with some per-platform definitions. The per-platform definitions are required
because some things are difficult to test. It is impractical to test for bugs in the networking
functions in a general sense (what happens if the user is not connected to a network
when running the tests?) and some other feature tests would require root to function. In
portable OpenSSH, per-platform defines are usually used to mark certain platform features
as “broken” and to enable platform authentication code.

3.2 Complex differences

Complex differences can be frustrating for the developer. One of these is a collection of
essentially trivial differences: the wild variation between platforms in how login records
are maintained. Most systems maintain some form of utmp (logged in users, indexed by
TTY), wtmp (record of login and logout events), btmp (record of failed login attempts) and
lastlog (per-UID record of most recent login activity) files but the fields present in the files,
their contents and the way that login applications are expected to write to them frequently
differ between platforms. Some platforms have adopted the POSIX utmpx format and
associated functions, but this support is not universal even among actively maintained
operating systems.

OpenSSH introduced the logicrec API (contributed by Andre Lucas) to deal with this
morass. logicrec presents a high-level API that hides the gory details of updating the
appropriate files from the main application behind simple functions to record a login or
logout event. To achieve this, the loginrec.c code needs to present a superset of the fields
present in supported platforms utmp files. Compare figures 3 and 4. GNU/Linux possesses
a fairly complete utmp structure that closely matches the loginrec API, whereas other
platforms often omit one or more fields, often the IPv6 address. This API has greatly
simplified the task of supporting new systems in portable OpenSSH and has subsequently
been adopted by at least one other free software project [10].

A related approach is used in portable OpenSSH’s audit system (designed and implemented
by Darren Tucker). If the platform supports login event auditing, a simple bridge can be
written between its native API and portable OpenSSH’s abstract audit event API. At
present, BSM auditing is supported as used by Sun and Mac OS X/OpenBSM, but other
schemes would be trivial to add. Similarly, the password authentication / encryption code
has per-platform hooks for OS vendors who have decided that they should make things
complicated for application developers by using a function other than crypt() to perform
password encryption.

7

struct logininfo {

char progname[LINFO_PROGSIZE]; /* name of program (for PAM) */

int progname_null;

short int type; /* type of login (LTYPE_*) */

int pid; /* PID of login process */

int uid; /* UID of this user */

char line[LINFO_LINESIZE]; /* tty/pty name */

char username[LINFO_NAMESIZE]; /* login username */

char hostname[LINFO_HOSTSIZE]; /* remote hostname */

/* ’exit_status’ structure components */

int exit; /* process exit status */

int termination; /* process termination status */

unsigned int tv_sec;

unsigned int tv_usec;

union login_netinfo hostaddr; /* caller’s host address(es) */

}; /* struct logininfo */

Listing 3: main loginrec.c structure

struct utmpx

{

short int ut_type; /* Type of login. */

__pid_t ut_pid; /* Process ID of login process. */

char ut_line[__UT_LINESIZE]; /* Devicename. */

char ut_id[4]; /* Inittab ID. */

char ut_user[__UT_NAMESIZE]; /* Username. */

char ut_host[__UT_HOSTSIZE]; /* Hostname for remote login. */

struct __exit_status ut_exit; /* Exit status of a process marked

as DEAD_PROCESS. */

long int ut_session; /* Session ID, used for windowing. */

struct timeval ut_tv; /* Time entry was made. */

__int32_t ut_addr_v6[4]; /* Internet address of remote host. */

char __unused[20]; /* Reserved for future use. */

};

Listing 4: Linux utmpx structure (abridged)

Some inter-platform differences are more subtle, an example of this is the differing semantics
of signal delivery: whether system calls are restarted after delivery of a signal or whether
they return with an EINTR and whether or not signal handlers are reinstalled after they
are used. OpenSSH uses a wrapper function mysignal() to provide BSD-like semantics,
following the technique presented by Stevens[19].

Astute readers may note that the OpenSSH mysignal() function is not exactly like Stevens’
in that it does not activate the restart of system calls after receipt of a signal. This is
because setting the POSIX SA RESTART flag is not sufficient to ensure that a system
call will fully complete upon receipt of a signal, for instance a read() may return fewer
bytes than were requested when it is interrupted. OpenSSH needs to be careful here, as
a SIGCHLD or other signal could arrive at any time during its execution, and it cannot
afford to assume that a read() or write() will continue to completion. Instead, OpenSSH
deals with interrupted or short reads and writes using a wrapper function atomicio(). This
function will try to read or write the specified number of bytes, restarting if the system call
returns a short transfer or an EINTR error. atomicio will run until either all the requested
bytes are moved or an error or EOF condition has occurred.

8

3.3 Differences with security implications

Most of the time inter-platform differences will cause obvious failures when they are not
properly dealt with. However, some differences are subtle and have effects that can seriously
impact security.

One example of this is the PAM library [17]. PAM provides a standard API for programs
to perform user authentication, authorisation and session setup. However and ambiguity
in the specification leads to a nasty bug. PAM is a challenge/response API, providing the
application a set of pam message structures which can instruct it to display messages or
prompt for user input with character echo enabled (for non-sensitive questions) or disabled
(e.g. for passwords). Developers of some Sun-derived PAM implementations interpreted
this set of messages as being passed as a pointer to an array of struct pam message, whereas
the Linux-PAM [15] developers took the view that it is passed as An array of pointers to
struct pam message. In the common case where only a single message is present, the two
are equivalent. However when multiple messages are present, an application expecting the
wrong behaviour could read to or write from an incorrect address, a behaviour that is
potentially exploitable by an attacker to gain control of the process. Worse, because it is
responsible for authentication, the application code that deals with PAM must run with
super-user privileges, which a successful exploit would gleefully inherit.

To tackle this, portable OpenSSH implemented the accessor macro shown in Listing 6 to
hide the PAM implementation’s pam message passing convention.

Another platform difference of concern is in the semantics of the setuid family of calls:
setuid, setreuid, setresuid, and their group ID manipulation counterparts. Chen and Wag-
ner [3] have found that several naive usage patterns of these system calls can lead to an

mysig_t

mysignal(int sig, mysig_t act)

{

struct sigaction sa, osa;

if (sigaction(sig, NULL, &osa) == -1)

return (mysig_t) -1;

if (osa.sa_handler != act) {

memset(&sa, 0, sizeof(sa));

sigemptyset(&sa.sa_mask);

sa.sa_flags = 0;

#ifdef SA_INTERRUPT

if (sig == SIGALRM)

sa.sa_flags |= SA_INTERRUPT;

#endif

sa.sa_handler = act;

if (sigaction(sig, &sa, NULL) == -1)

return (mysig_t) -1;

}

return (osa.sa_handler);

}

Listing 5: Replacement for signal() using POSIX sigaction()

9

#ifdef PAM_SUN_CODEBASE

define PAM_MSG_MEMBER(msg, n, member) ((*(msg))[(n)].member)

#else

define PAM_MSG_MEMBER(msg, n, member) ((msg)[(n)]->member)

#endif

Listing 6: Working around different PAM semantics

incomplete revocation of privilege. Portable OpenSSH adopts their recommendations, and
implements a somewhat paranoid approach when permanently discarding privilege:

1. Drop group privileges: setgroups, setegid and setgid

2. Drop user privileges: seteuid and setuid

3. Try to restore group privileges and raise a fatal error if successful

4. Try to restore user privileges and raise a fatal error if successful

Where possible, the setresuid and setresgid API is used in favour of separate calls to set
the real and effective IDs. These functions offers the most unambiguous semantics and
ensure that saved IDs are set correctly [3]. As a result, OpenBSD is replacing all uses of
these older functions to permanently drop privileges with calls to setresuid and setresgid
throughout its code-base.

4 Choosing the right API

A popular, but naive view of portability is that it consists of “avoiding unportable APIs”.
This may ease some of the more trivial portability problems encountered by developers,
but it has the negative effect of dumbing software down to the lowest common denomi-
nator. Nearly all of the best APIs from a security perspective are incompletely portable.
However the benefit for using these APIs in favour of more portable, but less secure ones
greatly outweighs the cost of having to include portable replacements, especially when one
considers that the better APIs are only going to become more common with time.

One concrete example of this is the closefrom system call (atomically close all open file
descriptors numbered above a certain bound) - it was first introduced in Sun Solaris, but
subsequently added to OpenBSD and then NetBSD. An application that used the lowest
common denominator approach of manually closing file descriptors would never benefit
from the improved API, even if it was introduced to the application’s native platform.

A system interface that went the other way is the /dev/random cryptographic random
number device [20]; first implemented on Linux and the BSDs, but eventually added to So-
laris. This is a kernel facility that provides a central pool of cryptographically unguessable

10

random numbers, made available to user applications via the /dev/random device node.
Unguessable random numbers are critically important for cryptographic applications such
as key generation and agreement. The provision of a central and strong API removed the
temptation for application developers to “roll their own” random pooling and seeding code,
often with insecure results [7]. The use of such kernel facilities where available, or a good
user-level replacement (such as PRNGd [8]) is strongly recommended.

Sadly, sometimes better APIs aren’t always universally adopted. For instance, the strlcpy
and strlcat functions [13]. These are designed to replace strcpy, strcat, strncpy and strncat.
These latter functions are standard POSIX, but suffer serious deficiencies: strcpy and strcat
do not check the boundaries of the target buffer and therefore can easily overrun it if used
without the highest degree of care (giving rise to the famous stack-smashing attack [2]).
The bounds-checked strncpy and strncat are not much better; they fail to nul-terminate the
target string if the source string is equal or longer in length than the target buffer (thereby
opening a related class of security bugs) and they do not return enough information to
allow the application developer to detect cases where a string truncation has occurred.

The strlcpy and strlcat API properly check the target buffer’s bounds, nul-terminate in
all cases and return the length of the source string, allowing detection of truncation. This
API has been adopted by most modern operating systems and many standalone software
packages, including OpenBSD (where it originated), Sun Solaris, FreeBSD, NetBSD, the
Linux kernel, rsync and the GNOME project. The notable exception is the GNU standard
C library, glibc [12], whose maintainer steadfastly refuses to include these improved APIs,
labelling them “horribly inefficient BSD crap” [4], despite prior evidence that they are
faster is most cases than the APIs they replace [13]. As a result, over 100 of the software
packages present in the OpenBSD ports tree maintain their own strlcpy and/or strlcat
replacements or equivalent APIs - not an ideal state of affairs.

Finding replacements for good APIs isn’t hard - it is highly probable that a free software
project has already solved the problem and has made a licence-compatible replacement
available. Nor should the task result in a dramatic increase in a project’s size, most
of these APIs are trivial to replace. Table 3 shows the sizes of the largest replacement
functions used in portable OpenSSH. In almost all of these cases, the code was obtained
or adapted from OpenBSD’s standard C library. A good long-term approach in this age
of open source operating systems is to also contribute this support code to their libraries
or kernels.

4.1 Conclusion

The main recommendations of this paper may be briefly summarised into six simple rules:

1. Avoid cluttering main code paths with portability code, especially that wrapped up
in nested preprocessor

11

Function Lines of code
(inc. comments)

glob() 914
snprintf() 652
getrrsetbyname() 585
base64 ntop() and
base64 pton() 324
getcwd() 242
vis() 239
inet ntop() 229
getaddrinfo(),
getnameinfo() and
support functions 224
openpty() 201
realpath() 196

Table 3: largest replacement functions in Portable OpenSSH

2. Pick the best possible API available, even if it isn’t available on every platform - it
can be replaced or imported if it doesn’t exist somewhere

3. Replace missing or broken functions in a separate library rather than performing the
surgery inline

4. Where possible, obtain an existing, known-good replacement instead of developing
new code (e.g. from OpenBSD’s libc)

5. When dealing with areas of great platform variability, abstract the API back to a
superset of the platforms’ features

6. Be alert for subtle differences or bugs between platforms, and doubly so in areas of
an application that wield privilege

This paper has detailed some common portability problems, ranging from the simple to
the complex, and approaches to solve them. These approaches may not be optimum for
every application, but they have served portable OpenSSH well in allowing it to function
on over twenty platforms while retaining maintainability of the code-base.

References

[1] IEEE Std 1003.1, 2004: IEEE standard portable operating system Interface for com-
puter environments, Institute of Electrical and Electronics Engineers, 2004

12

[2] Aleph One, Smashing the stack for fun and profit, Phrack Magazine, Vol. 7, Issue 49

[3] H. Chen, D. Wagner and D. Dean, Setuid Demystified, Proceedings of the 11th USENIX
Security Symposium

[4] U. Drepper, , post to libc-alphasources.redhat.com mailing list,
http://sources.redhat.com/ml/libc-alpha/2000-08/msg00053.html, August 2000

[5] J. Fulton, Configuration management in the X Window system, Technical report, MIT
Laboratory for Computer Science, 1989

[6] R. Gilligan,Basic Socket Interface Extensions for IPv6, RFC 3493, February 2003

[7] I. Goldberg, D. Wagner, Randomness and the Netscape Browser, Dr. Dobb’s Journal,
1996

[8] L. Jänicke, PRNGD - Pseudo Random Number Generator Daemon,
http://www.aet.tu-cottbus.de/personen/jaenicke/postfix tls/prngd.html

[9] S. C. Johnson, D. M. Ritchie, Portability of C Programs and the UNIX System, The
Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978

[10] M. Johnston, Dropbear SSH server and client,
http://matt.ucc.asn.au/dropbear/dropbear.html

[11] D. MacKenzie, et. al., GNU Autoconf, http://www.gnu.org/software/autoconf/

[12] R. McGrath, et. al., GNU C Library, http://www.gnu.org/software/libc/libc.html

[13] T. Miller, T. de Raadt, strlcpy and strlcat – Consistent, Safe, String Copy and Con-
catenation, Proceedings of the 1999 USENIX Security Symposium

[14] D. Mills, et. al., ntp-stable-4.2.0a-20050303 software distribution,
http://www.ntp.org/

[15] A. G. Morgan, Linux-PAM, http://www.kernel.org/pub/linux/libs/pam/

[16] OpenSSH project, OpenSSH, http://www.openssh.org/

[17] V. Samar, R. Schemers, Unified login with pluggable authentication modules (PAM),
Open Software Foundations, Request for comments 86.0, October 1995

[18] H. Spencer, #ifdef Considered Harmful, or Portability Experience with C News, Sum-
mer USENIX 1992

[19] W. Richard Stevens, Advanced Programming in the UNIX Environment, Addison Wes-
ley Publishing Company, 1992, ISBN 0-201-56317-7

[20] T. Ts’o, random.c – A strong random number generator, Linux kernel, 1994

13

http://sources.redhat.com/ml/libc-alpha/2000-08/msg00053.html
http://www.aet.tu-cottbus.de/personen/jaenicke/postfix_tls/prngd.html
http://matt.ucc.asn.au/dropbear/dropbear.html
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/libc/libc.html
http://www.ntp.org/
http://www.kernel.org/pub/linux/libs/pam/
http://www.openssh.org/

	Introduction
	Approaching Portability
	Platform differences
	Trivial differences
	Use of the C preprocessor
	Activating replacements

	Complex differences
	Differences with security implications

	Choosing the right API
	Conclusion

