
Thwarting Return Oriented
Programming (ROP) Attacks

Theo de Raadt
OpenBSD

Control flow manipulation, oooh la la!

● Our wonderful tools of modern computation!

– Wide sloppy granularity (pages) ... small objects in writeable memory
– Languages / Tooling / Practice without strict-bounds
– Oh noes memory damage!
– Conditional logic makes decision based upon damage
– Reaches control flow, which is stored in writeable memory

● Non-standard compute methodologies use the machine against our wishes

Common in 2000: Classic Buffer overflow attack

A program error permits stack damage...

● Attackers use standard local-variable buffer stack-overflow

● Method

– Find a mis-managed local variable buffer
– Upload code into buffer
– Point return address at code buffer

How it looks in memory

Unchecked
var[]

Stack

return-addr

Attacker
inserted code

Mitigations for standard attack (2001-2005)

● Make stack memory non-executable (code on stack can‘t run)

● Random placement of stacks (harder to find the code offset)

● Stack protector (detect overflow before RET, and crash fast)

● Over time, practices adopted by all operating systems

Mitigations in action

Unchecked
var[]

Stack

return-addr

Inserted code

Insert SSP
Canarie check

Not
Executable

Random
BIAS
every
runtime

Everything solved?? NO!!!

2008: ROP method surfaces

Once again, program error permits stack damage…

● Placement of ROP-chain – series of returns into code which
already exists in the program

● Sections of code are called gadgets
– Small fragments that modify machine state
– End in a RET instruction

● Utilize gadget side-effects to implement attack

How it looks in memory

Unchecked
var[]

return-addr

Inserted ROP chain

Program CodeProgram Stack

Gadget

Gadget

Gadget

Gadget

Observations made by attacker

● Discovery of gadgets

– Gadget complexity
– Combining artifacts – Abstract machine model

● RET instruction

– Function tails
– Variable-sized instruction architectures: Polymorphism, embedded

0xc3
● Shared library / PIC influences
●

Simple Gadget

RET

MOV #1, (Rx)

Imagine this is the
side effect attacker
wants

Single side-effect

To next gadget...

More complex Gadget

RET

MOV #1, (Rx)

Side-effect useful
to attacker

MOV (Ry), Rn
Could be a hazard,
(Ry) may be
unmapped memory

To next gadget...

x86: Gadgets hiding inside Instructions

ffffffff8100411c: 0f 82 64 02 00 00 jb ffffffff81004386 <intel_psr_disable+0486>
ffffffff81004122: 48 69 c3 d0 07 00 imul $0x7d0,%rbx,%rax

ffffffff81004121: 00 48 69 add byte ptr [rax + 0x69], cl
ffffffff81004124: c3 ret

Look what hiding inside!

To solve this we would need to eliminate the byte sequences
0xc2, 0xc3, 0xca, 0xcb inside any instruction – including
constant loading sequences, relative addresses, etc etc!!!!

¨poly-RET¨

Observations made by defender

● Reduction of usable sequence+RET would help
– Canarie-checks before RET
– Some Poly RET instructions can be eliminated

● Attackers like to read code for discovery
– Remove readability?

● Complex gadgets are fragile
– Reduce existance of simple ones, forcing use of complex ones
– Search for ways to increase fragility further

RetGuard4

● Todd Mortimer working on a replacement for stack protector

● Non-polymorphic check in epilogue before RET
● Uses a per-function random cookie: .openbsd.randomdata

● Ensures standard end-of-function RET is not a gadget

RetGuard4

Function prologue:

new Localvar = retaddr ^ perFNrandomcookie

Function epilogue:

if (retaddr ^ perFNrandomcookie != Localvar)

TRAP

RET

X-only instruction space

● Mike Larkin has started work on making code-segments X-only

– Kernel first, maybe userland later
● Code becomes not-readable

● Attackers will have less opportunity to read in the .text segment

● Gadgets which accidentally inspect code regions will crash

● Now possible because clang compiler doesn‘t produce data islands (switch tables,
etc etc)

JIT ROP – Stack pivots

● W^X progressed to minimizing R, W, X permissions on all objects

● New: MAP_STACK option to mmap()

● Now kernel knows what memory is a stack

● Upon kernel entry, check if stack-pointer points to stack memory

– If not, kill program
● Concerns: pthread stacks, sigaltstack

● JIT attacks often do stack-pivots onto payload in heap/data

x86: 0xc2/0xc3/0xcb reduction

● Many components to this problem

– compiler output, assembler output, link-time
– Instructions which must be avoided

● Ideas, but no substantial work started

Attackers depend on a rich gadget portfolio. Let‘s starve them.

Maybe we can get to this?

Unchecked
var[]

return-addr

Inserted ROP chain

Program CodeProgram Stack

Gadget

RetGuard

0xc3 removal

RetGuard

Everything solved?? NO!!

● None of these are complete solutions for ROP methodology

● Together, we hope they increase resistance

● Best we can do without throwing entire hardware/software ecosystem away

● Question time: Go ahead, ask about RUST...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

