Thwarting Return Oriented
Programming (ROP) Attacks

Theo de Raadt
OpenBSD

Control flow manipulation, oooh la Ia!

Our wonderful tools of modern computation!

Wide sloppy granularity (pages) ... small objects in writeable memory
Languages / Tooling / Practice without strict-bounds

Oh noes memory damage!

Conditional logic makes decision based upon damage
Reaches control flow, which is stored in writeable memory

Non-standard compute methodologies use the machine against our wishes

Common in 2000: Classic Buffer overflow attack

A program error permits stack damage...

Attackers use standard local-variable buffer stack-overflow

Method

Find a mis-managed local variable buffer
Upload code into buffer
Point return address at code buffer

How it looks in memory

return-addr

Unchecked Attacker
var(] inserted code

Mitigations for standard attack (2001-2005)

Make stack memory non-executable (code on stack can‘t run)

Random placement of stacks (harder to find the code offset)

Stack protector (detect overflow before RET, and crash fast)

Over time, practices adopted by all operating systems

Mitigations in action

Insert SSP
Canarie check

return-addr Not |
Unchecked Executable
var(Inserted code

Stack

Everything solved?? NO!!!

Random
BIAS
every
runtime

2008: ROP method surfaces

Once again, program error permits stack damage...

Placement of ROP-chain — series of returns into code which
already exists in the program

Sections of code are called gadgets

Small fragments that modify machine state
End in a RET instruction
Utilize gadget side-effects to implement attack

How it looks In memory

Inserted ROP chain

Gadget

Unchecked

Gadget
varf]

return-addr I

Gadget

Program Code

Observations made by attacker

Discovery of gadgets

Gadget complexity
Combining artifacts — Abstract machine model
RET instruction

Function tails

Variable-sized instruction architectures: Polymorphism, embedded
Oxc3

Shared library / PIC influences

Simple Gadget

Imagine this is the
side effect attacker

wants

Single side-effect

MOV #1, (Rx)

To next gadget...

More complex Gadget

Side-effect useful

/ to attacker
MOV #1, (Rx)

~__ Could be a hazard,
MOV (Ry), Rn * (Ry) may be
unmapped memory

RET
\ To next gadget...

Xx86: Gadgets hiding inside Instructions

ffffffff8100411c:
ffffffff81004122:

ffffffff81004121:
ffffffff81004124:

0f 82 64 02 0000

48 69 c3

do 07 00

00 48 69
c3

jb ffffffff81004386 <intel psr disable+0486>
imul $0x7d0,%rbx,%rax

Look what hiding inside! \?0|Y-RET)

—

add byte ptr [rax + 0x69], cl
ret

To solve this we would need to eliminate the byte sequences
0xc2, 0xc3, 0xca, Oxcb inside any instruction - including
constant loading sequences, relative addresses, etc etc!!!!

Observations made by defender

Reduction of usable sequence+RET would help
Canarie-checks before RET
Some Poly RET instructions can be eliminated
Attackers like to read code for discovery
Remove readability?
Complex gadgets are fragile
Reduce existance of simple ones, forcing use of complex ones
Search for ways to increase fragility further

RetGuard4

Todd Mortimer working on a replacement for stack protector

Non-polymorphic check in epilogue before RET
Uses a per-function random cookie: .openbsd.randomdata

Ensures standard end-of-function RET is not a gadget

RetGuard4

Function prologue:

new Localvar = retaddr * perFNrandomcookie

Function epilogue:

if (retaddr » perFNrandomcookie != Localvar)

TRAP
RET

X-only instruction space

Mike Larkin has started work on making code-segments X-only

Kernel first, maybe userland later
Code becomes not-readable

Attackers will have less opportunity to read in the .text segment
Gadgets which accidentally inspect code regions will crash

Now possible because clang compiler doesn‘t produce data islands (switch tables,
etc etc)

JIT ROP - Stack pivots

WAX progressed to minimizing R, W, X permissions on all objects
New: MAP_STACK option to mmap()

Now kernel knows what memory is a stack

Upon kernel entry, check if stack-pointer points to stack memory
If not, kill program

Concerns: pthread stacks, sigaltstack

JIT attacks often do stack-pivots onto payload in heap/data

X86: Oxc2/0xc3/0xcb reduction

Many components to this problem

compiler output, assembler output, link-time
Instructions which must be avoided
ldeas, but no substantial work started

Attackers depend on a rich gadget portfolio. Let's starve them.

Maybe we can get to this?

Inserted ROP chain

RetSuard

Unchecked 0xc3 renwval

varf]

return-addr I

RetSuard

Program Code

Everything solved?? NO!!

None of these are complete solutions for ROP methodology

Together, we hope they increase resistance

Best we can do without throwing entire hardware/software ecosystem away

Question time: Go ahead, ask about RUST...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

