
Ref lec t ions |P ro jec t i ons 2007

Using OpenBSD Security Features
to Find Software Bugs

Peter Valchev
pvalchev@openbsd.org

mailto:pvalchev@openbsd.org

Overv iew o f OpenBSD

History
● Berkeley Software Distribution (BSD)
● First freely distributable BSD was released in

June 1989.
● BSD License Origins
● GPL Comparison
● In 1993, NetBSD and FreeBSD were created.
● In 1995, OpenBSD was born.

Why OpenBSD?

● Project Culture

– Small number of developers

– Hackathons

– Develop to help everyone, not just OpenBSD
● Pride ourselves on clean code and a friendly

development environment.

● Open Source Advocacy

– Use BSD license as much as possible

– Audited licensing for the entire source tree.

– Develop free device drivers (e.g. Atheros)

– Fight for open hardware documentation.

OpenBSD Secur i ty Goa l s

● OpenBSD has an uncompromising view toward security.

● “Secure by Default”

● Only 2 remote holes in the default install, in more than
10 years! (How many has Windows had?)

● Use and design cutting edge security technologies.

● Strong use of cryptography and hardware crypto.

● Continual auditing

● More at: http://www.openbsd.org/security.html

The Ma in Idea

● OpenBSD can be considered a hostile environment.

● This environment allows us to find bugs in applications
that would otherwise silently misbehave.

● We are constrained by POSIX and ANSI, but still have
lots of room to play.

● As a result of our work, we have not only improved the
base system, but have found many issues in third party
packages such as Firefox, OpenOffice, etc.

Secur i ty and Bugs

● Who has had their box 0wned? Who has 0wned a box?

● A security bug is just a bug.

● Understanding and reproducing its side effects creates
an opportunity for system exploit.

Some Secur i ty Techno log ies

● strlcpy/strlcat

● memory protection

● privilege revocation (e.g. ping)

● privilege separation (e.g. SSH)

● chroot jailing

● new uids

● ProPolice (SSP)

● StackGap (3-line change to the kernel)

● ld.so randomness

● mmap and malloc randomness

Stack Bu f fe r Over f l ows

void foo(char *str) {
char buf[10];
strcpy(buf, str);

}

parent's
stack

return addr

saved fp

char *str

buf[10]

free
space

S

M

Stack Bu f fe r Over f l ows

void foo(char *str) {
char buf[10];
strcpy(buf, str);

}

parent's
stack

return addr

saved fp

char *str

buf[10]

free
space

S

M

ProPo l i ce (SSP)

● A compiler extension for protecting against
stack smashing attacks.

● Protection code is inserted into the programs at
compile time.

● Should be default (negligible overhead), but can
also be enabled with a flag.

● Runtime protection “after the fact”

● Default in OpenBSD since December 2002;
recently in gcc-4, but not default!

ProPo l i ce , How I t Works

● Protection code is injected into each
candidate function at compile time.

– Prologue inserts a random value, the
canary, on the stack before local arrays

– Function Epilogue checks the canary and
aborts if it has been modified

● Reorder the stack by putting buffers closer
to the return address.

– Flags and pointers are lower, so they are
harder to overwrite.

– Overflows are more likely to modify the
canary.

● Low cost at compile time; performance
impact of ~1.3%

parent's
stack

return addr

saved fp

canary

local arrays

free
space

S

Mlocal int/ptrs

ProPo l i ce , How I t Works

● Protection code is injected into each
candidate function at compile time.

– Prologue inserts a random value, the
canary, on the stack before local arrays

– Function Epilogue checks the canary and
aborts if it has been modified

● Reorder the stack by putting buffers closer
to the return address.

– Flags and pointers are lower, so they are
harder to overwrite.

– Overflows are more likely to modify the
canary.

● Low cost at compile time; performance
impact of ~1.3%

parent's
stack

return addr

saved fp

0x3419AF02

local arrays

free
space

S

Mlocal int/ptrs

ProPo l i ce Demo

Step 1. Compile program with ProPolice-enabled GCC

Step 2. Done! Program can be ran as normal.

If an overflow is detected upon execution, the program is
terminated and a message is logged.

Spot the Bug!

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXLEN 1024

int main() {
char *string, *test;
string = strdup(“Hey World”);
test = malloc(MAXLEN);
strlcpy(test, string, sizeof(string));
printf(“%s\n”, test);
return 1;

}

gcc -Wbounded

● A compiler option (gcc -Wbounded) that performs static
checking to make sure the bounds length passed to common
functions matches the real buffer length.

● -Wformat also enables bounds checking for scanf(3) %s
format variables.

● Right now this checking is very limited and simple, and still
found hundreds of bugs throughout our ports tree (in third
party applications).

DEMO!

char buf[1024] // buf's size has to be known at compile time
snprintf(buf, SIZE, fmt) // will check if SIZE == 1024

Randomiza t ion E f fo r t s

● Exploits rely on predictable system behaviour. How can
we cause exploit writers hell?

● StackGap inserts a random-sized gap in the stack.

● randomization in ld.so(1)

– Load libraries at random memory locations

– Load libraries in random order
● random mmap(2)

● random malloc(3)

random mmap(2)

● POSIX says that if MAP_FIXED is specified, we
must map into that address.

● Otherwise, the OS is free to select a memory
location (other systems do this very predictably).

● So, if MAP_FIXED is not specified, choose a random
address. Each time a program is ran, different
address space behaviour!

● When relying on finding a function/code at a certain
location, must guess where it's placed in virtual
memory.

random mal loc (3)

● The addresses of objects allocated by malloc() are
quite predictable!

● Exploits have relied on this!

● Two types of objects

– < PAGE_SIZE: malloc maintains a bucket of
“chunks” and returns a random one; this is not
default behaviour yet.

– ≥ PAGE_SIZE: use mmap(2), which is
randomized

DEMO!

mal loc “Guard Pages”

● Enabled with /etc/malloc.conf -> 'G'
● Enables guard pages and chunk randomization. Each

page size or larger allocation is followed by a guard
page that will cause a segmentation fault upon access.
Smaller than page size chunks are returned in a
random order.

● Other robust measures (eg. malloc(0) crashes)
● Not default, since too many applications are buggy

DEMO!

Address Space Po l i cy : W^X

● Many exploits rely on the fact that the address space
has memory that is both writeable and executable (W |
X)

● Make a generic policy for the whole address space:

● A page may be writeable or executable, but not both
(W^X)

– Need per-page X bit (fine-grained page permissions):
arm, amd64, sparc64, many others

– Other solution necessary for i386/powerpc
● Found several bugs in applications that made incorrect

assumptions. We still conform to POSIX, ANSI, etc.

Arch i tec ture D i f fe rences

● OpenBSD supports 12 different architectures (17
platforms). Why is this cool?

● Helps us uncover machine-independent bugs!

● Examples

– big endian vs little endian (eg. sparc64 vs i386)

– 64-bit vs 32-bit

– signed vs unsigned char (macppc)

– stack grows up not down (where?)

– aligned memory access requirement

– ILP32 vs I32LP64 (nastiest is sparc64 - BE I32LP64!)

Conc lus ion

Features we discussed

● Compiler Features (ProPolice, Wbounded)

● Memory Protection (non-exec stack, W^X, others)

● Randomization (stackgap, ld.so, mmap, malloc)

● Malloc Guard Pages

Using these, we have uncovered a lot of evil! We have
created a hostile environment for applications to run in,
and that has provided safer, more robust software!

Thanks

● Thanks for having me here!

● Thanks to the other OpenBSD developers that built
all of this!

● The project is supported by donations and sales of
CDs and T-Shirts (I have some here!)

References:

● http://www.openbsd.org/papers/strlcpy-paper.ps

● http://www.trl.ibm.com/projects/security/ssp

http://www.openbsd.org/papers/strlcpy-paper.ps
http://www.trl.ibm.com/projects/security/ssp

Remember . . .

