Reflections|Projections 2007

Using OpenBSD Security Features
to Find Software Bugs

Peter Valchev
pvalchev@openbsd.org

mailto:pvalchev@openbsd.org

Overview of OpenBSD

History
« Berkeley Software Distribution (BSD)

* First freely distributable BSD was released In
June 1989.

« BSD License Origins

« GPL Comparison

* In 1993, NetBSD and FreeBSD were created.
e In 1995, OpenBSD was born.

Why OpenBSD?

* Project Culture

- Small number of developers
- Hackathons
- Develop to help everyone, not just OpenBSD

* Pride ourselves on clean code and a friendly
development environment.

 Open Source Advocacy
- Use BSD license as much as possible
- Audited licensing for the entire source tree.

- Develop free device drivers (e.g. Atheros)
- Fight for open hardware documentation.

OpenBSD Security Goals

« OpenBSD has an uncompromising view toward security.
« “Secure by Default”

 Only 2 remote holes in the default install, in more than
10 years! (How many has Windows had?)

« Use and design cutting edge security technologies.
e Strong use of cryptography and hardware crypto.
« Continual auditing

 More at: http://www.openbsd.org/security.html

The Main ldea

« OpenBSD can be considered a hostile environment.

 This environment allows us to find bugs in applications
that would otherwise silently misbehave.

 We are constrained by POSIX and ANSI, but still have
lots of room to play.

* As a result of our work, we have not only improved the
base system, but have found many issues in third party
packages such as Firefox, OpenOffice, etc.

Security and Bugs

« Who has had their box Owned? Who has Owned a box?
« A security bug is just a bug.

 Understanding and reproducing its side effects creates
an opportunity for system exploit.

Some Security Technologies

« stricpy/stricat

« memory protection

« privilege revocation (e.g. ping)

» privilege separation (e.g. SSH)

« chroot jailing

 new uids

* ProPolice (SSP)

« StackGap (3-line change to the kernel)
* |d.so randomness

« mmap and malloc randomness

Stack Buffer Overflows

parent's
stack

return addr

S saved fp A
voi d foo(char *str) { char *str
char buf[10];
strcpy(buf, str);
buf[10]
v M
free

space

Stack Buffer Overflows

parent's
stack

return addr

S saved fp A
voi d foo(char *str) { char *str
char buf[10];
strcpy(buf, str);
buf[10]
v M
free

space

ProPolice (SSP)

A compiler extension for protecting against
stack smashing attacks.

* Protection code is inserted into the programs at
compile time.

 Should be default (negligible overhead), but can
also be enabled with a flag.

« Runtime protection “after the fact”

« Default in OpenBSD since December 2002;
recently in gcc-4, but not default!

ProPolice, How It Works

« Protection code is injected into each
candidate function at compile time.

parent's
- Prologue inserts a random value, the stack
canary, on the stack before local arrays

return addr

- Function Epilogue checks the canaryand S saved fp A
aborts if it has been modified

 Reorder the stack by putting buffers closer _

to the return address. local arrays

- Flags and pointers are lower, so they are

harder to overwrite. v localint/ptrs |

- Overflows are more likely to modify the

canary. free

B space
 Low cost at compile time; performance

impact of ~1.3%

ProPolice, How It Works

« Protection code is injected into each
candidate function at compile time.

parent's
- Prologue inserts a random value, the stack
canary, on the stack before local arrays

return addr

- Function Epilogue checks the canaryand S saved fp A
aborts if it has been modified

 Reorder the stack by putting buffers closer _

to the return address. local arrays

- Flags and pointers are lower, so they are

harder to overwrite. v B |

- Overflows are more likely to modify the

canary. free

N space
 Low cost at compile time; performance

impact of ~1.3%

ProPolice Demo

Step 1. Compile program with ProPolice-enabled GCC
Step 2. Done! Program can be ran as normal.

If an overflow is detected upon execution, the program is
terminated and a message is logged.

#include
#include
#include

#define MAXLEN

int main () {
char *string, *test;
string = strdup () ;
test = malloc (MAXLEN) ;

strlcpy(test, string, sizeof(string));

printf (“ss\n”, test);

return H

« A compiler option (gcc -Wbounded) that performs static
checking to make sure the bounds length passed to common
functions matches the real buffer length.

char buf|] /'l buf's size has to be known at conpile tine

snprintf(buf, SIZE, fnt) // will check if SIZE == 1024

« -Wformat also enables bounds checking for scanf(3) %s
format variables.

* Right now this checking is very limited and simple, and still
found hundreds of bugs throughout our ports tree (in third
party applications).

DEMO!

Randomization Efforts

« Exploits rely on predictable system behaviour. How can
we cause exploit writers hell?

« StackGap inserts a random-sized gap in the stack.
 randomization in ld.so(1)

- Load libraries at random memory locations
- Load libraries in random order
« random mmap(2)

e random malloc(3)

random mmap(2)

« POSIX says that if MAP_FIXED is specified, we
must map into that address.

 Otherwise, the OS is free to select a memory
location (other systems do this very predictably).

« So, if MAP_FIXED is not specified, choose a random
address. Each time a program is ran, different
address space behaviour!

« When relying on finding a function/code at a certain
location, must guess where it's placed in virtual
memory.

random malloc(3)

 The addresses of objects allocated by malloc() are
quite predictable!

« Exploits have relied on this!
« Two types of objects

- < PAGE_SIZE: malloc maintains a bucket of
“chunks” and returns a random one; this is not
default behaviour yet.

- = PAGE _SIZE: use mmap(2), which is
randomized

DEMO!

malloc “Guard Pages”

 Enabled with /etc/malloc.conf -> 'G'

 Enables quard pages and chunk randomization. Each
page size or larger allocation is followed by a guard
page that will cause a segmentation fault upon access.
Smaller than page size chunks are returned in a
random order.

» Other robust measures (eg. malloc(0) crashes)

* Not default, since too many applications are buggy

DEMO!

Address Space Policy: W™ X

« Many exploits rely on the fact that the address space
has memory that is both writeable and executable (W |
X)

« Make a generic policy for the whole address space:

« A page may be writeable or executable, but not both
(W~ X)

- Need per-page X bit (fine-grained page permissions):
arm, amdo64, sparc64, many others

- Other solution necessary for i386/powerpc

 Found several bugs in applications that made incorrect
assumptions. We still conform to POSIX, ANSI, etc.

Architecture Differences

« OpenBSD supports 12 different architectures (17
platforms). Why is this cool?

* Helps us uncover machine-independent bugs!
« Examples
- big endian vs little endian (eg. sparc64 vs i386)
- 64-bit vs 32-bit
- sighed vs unsigned char (macppc)
- stack grows up not down (where?)
- alighed memory access requirement
- ILP32 vs 132LP64 (nastiest is sparc64 - BE 132LP64!)

Conclusion

Features we discussed

« Compiler Features (ProPolice, Wbounded)

« Memory Protection (non-exec stack, W~ X, others)
 Randomization (stackgap, ld.so, mmap, malloc)

 Malloc Guard Pages

Using these, we have uncovered a lot of evil! We have
created a hostile environment for applications to run in,
and that has provided safer, more robust software!

nanks for having me here!

04 o4 o

nanks to the other OpenBSD developers that built
| of this!

ne project is supported by donations and sales of
Ds and T-Shirts (I have some here!)

References:
« http://www.openbsd.org/papers/stricpy-paper.ps
o http://www.trl.ibm.com/projects/security/ssp

http://www.openbsd.org/papers/strlcpy-paper.ps
http://www.trl.ibm.com/projects/security/ssp

Every time you use Flash, God kills a kitten.
Please think of the kittens.

