
Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

On the Linux Compatibility Layer in OpenBSD 5.0

Paul Irofti
pirofti@openbsd.org

Slackathon, 2011

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Outline

1 Introduction
What Is compat linux(8)?
Why Is It Important?

2 Userland Quick Overview
Executing a Linux Binary
Shared Libraries
Devices

3 Processes and Threads
Emulation On the Fly
Emulation Data
Machine Dependent Constraints

4 System Calls
Overview
HowTo

5 Conclusions

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

What Is compat linux(8)?

What Can compat linux(8) Do?

It can make Linux binaries seem native to OpenBSD.

Example

IDA Pro

Skype

Opera

It could even allow us to run MatLab!

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

What Is compat linux(8)?

Different Perspectives

Userland:

Definition

compat linux(8) is a Linux binary
emulation layer for OpenBSD.

Kernel:

Definition

compat linux(8) is a Linux
translator for OpenBSD.

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Why Is It Important?

Because. . .

Good Stuff

No dual-booting

Quickly test something w/o having to install Linux

Lets very useful propetary software run on OpenBSD

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Why Is It Important?

But Most Importantly. . .

It’s the last fighting point in
/sys/compat against tedu’s crusade!

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Executing a Linux Binary

Static Executable

Setup

The process is very straight forward:

sysctl kern.emul.linux=1

run your application as you would any other

the kernel takes care of everything

Possible Problems

calling an unimplemented syscall

special (linux-only) device/driver requirements

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Executing a Linux Binary

Dynamically Linked Executable

This gets a lot more complicated:

sysctl kern.emul.linux=1

ldd(1) the designated executable

gather the required Linux shared librarires

fetch the proper Linux loader for them

make sure the executable knows where to look for them

pray

run your application as you would any other

the kernel takes care of everything else

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Executing a Linux Binary

Dynamically Linked Executable (2)

Yes, this is crazy!

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Shared Libraries

DIY

Setup

If you have Linux installed and handy:

sysctl kern.emul.linux=1

fetch the dynamic libraries listed by ldd(1)

throw them under /emul/linux

run the executable

no need to set any paths

The rest will be handled behind the scenes by OpenBSD.

Possible problems

the loader will screw with you

you’ll end up in a maze of shared libraries and dependencies

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Shared Libraries

The Linux Distro Package

Setup

The easiest way is to:

sysctl kern.emul.linux=1

pkg add fedora base

run your application as you would any other

let the kernel take care of rest

Possible Problems

missing package in fedora base

Solution: fetch the rpm and untar it under /emul/linux

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Devices

Special Needs

Supported Devices

CD/DVD-ROM

Sound via /sys/compat/ossaudio

And probably other devices that you can just symlink to

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Emulation On the Fly

Just in Time!

At Runtime

a process starts execution

the executable type is detected

the proper compat layer is chosen

each system call is redirected for /sys/compat to resolve

afterwards, control is handled back to userland

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Emulation Data

Per-process data

Each Process. . .

is emulated separately

holds its own emulation data in struct proc

can fork and do threading transparently

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Emulation Data

Start-up Flow

For Each New Process. . .

probe from exec makecmds()

linux elf probe()

check for OS note — GNU

check for brand — Linux

emul find() → /emul/linux/<path>

switch from native to emul linux elf

return to exec makecmds()

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Emulation Data

struct emul

Contents

The most important members are:

name — native/linux

errno array

signaling function

system call array

copyargs(), setregs(), coredump()

proc {exec,fork,exit}()

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Machine Dependent Constraints

Why Is It Only Available On i386?

linux machdep.c

signaling — sendsig() and sigreturn()

I/O — permissions, trapframe, control

LDT fiddling

threads — [g|s]et thread area()

Solution

Write these functions for other architectures.

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Overview

The Meat in compat/linux

Most of the work in the kernel is done by the syscalls
implementation.

Theory

All the system calls provided by
the Linux kernel should be
reimplemented in the OpenBSD
kernel.

Practice

The system call array maps most
of the Linux syscalls to the ones
in OpenBSD with minor
translations.

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Overview

System Call Categories

The syscalls are split into multiple files:

file — creat, open, lseek, fstat. . .

mount — mount, umount

sched — clone, sched [g|s]etparam. . .

exec — execve, uselib

signal — sigaction, signal, kill, pause. . .

socket — socket, bind, connect, listen. . .

time — clock getres, gettime

blkio, cdrom, fdio — I/O control for the given devices

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

HowTo

The Prototype

Definition

linux sys foobar(struct proc *p, void *v,

register t *retval);

Parameters

struct proc — the calling thread

args — the syscall’s arguments

retval — the return value

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

HowTo

Where the Wild Syscalls Grow

syscalls.master

contains the name/number syscall pairs

generates the syscall declarations

generates the corresponding arguments structs

prototype fields: number type [type-dependent]

Types

STD — always included

UNIMPL — unimplemented, not included in the system

NOARGS — included, does not define the args structure

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

HowTo

Examples

Types

13 STD { int linux sys time(linux time t *t); }
41 NOARGS { int sys dup(u int fd); }
240 UNIMPL linux sys futex

Args

s t ruc t l i n u x s y s m k n o d a r g s {
s y s c a l l a r g (char ∗) path ;
s y s c a l l a r g (i n t) mode ;
s y s c a l l a r g (i n t) dev ;

} ;

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

Mostly Harmless

Subsystem

its pretty much isolated

easy to extend

easy to learn

ugly to actually hack on

TODOs and WIPs

futex support

full support for the 2.6 kernel series

update the userland package

ports to other architectures

Introduction Userland Quick Overview Processes and Threads System Calls Conclusions

So Long, and Thanks for All the Fish

Questions?

	Introduction
	What Is compat_linux(8)?
	Why Is It Important?

	Userland Quick Overview
	Executing a Linux Binary
	Shared Libraries
	Devices

	Processes and Threads
	Emulation On the Fly
	Emulation Data
	Machine Dependent Constraints

	System Calls
	Overview
	HowTo

	Conclusions

