strlcpy and stricat — consistent, safe, string copy and concatenation.

Todd C. Miller
University of Colorado, Boulder

Theo de Raadt
OpenBSD project

Abstract

As the prgadence of liffer overflow attacks has increased, more and more programmers are using size or
length-bounded string functions such as styficand strncat(). While this is certainly an encouraging trend, the
standard C string functions generally used were not really designed for the task. This paper describes an alternate,
intuitive, and consistent API designed with safe string copies in mind.

There are seral problems encountered when strncpy() and strncat() are used as safe versiong(pfsticgty

cat(). Bothfunctions deal with NUL-termination and the length parameter frdifit and non-intuite ways that

confuse gen experienced programmerd.hey also provide no easy way to detect when truncation ocdtirglly,

strncpy() zero-fills the remainder of the destination string, incurring a performance pe@aklil these issues, the
confusion caused by the length parameters and the related issue of NUL-termination are most indploetanie

audited the OpenBSD source tree for potential security holes we found rampant misuse of strncpy() and strncat().
While not all of these resulted in exploitable security holeg, theede it clear that the rules for using strncpy() and
strncat() in safe string operations are widely misunderstood. The proposed replacement functior}y asilcrl-

cat(), address these problems by presenting an API designed for safe string copies (see Figure 1 for function proto-
types). Bothfunctions guarantee NUL-termination, éaks a éngth parameter the size of the string in bytes, and
provide an easy way to detect truncation. Neither function zero-fills unused bytes in the destination.

Introduction of the programmeibut also to ma& code auditing eas-

In the middle of 1996, the authors, along with ter.
other members of the OpenBSD project, undertook an
audit of the OpenBSD source tree looking for security

problems, starting with an emphasis ouffer over- Size_t strlcpy(char *dst, \
flows. Bufer overflows [1] had recently gotten a lot of const char *src, size_t size);
attention in forums such as Bug [2] and were being Size_t strlcat(char *dst, \
widely exploited. We found a large number ofver- const char *src, size_t size);

flows due to unbounded string copies using sprintf(),

strepy() and strcat(), as well as loops that manipulated Figure 1 ANSI C prototypes for stricpy() and stricat()
strings without an explicate length check in the loop
invariant. Additionally we dso found man instances
where the programmer had tried to do safe string

manipulation with strncpy() and strncat() bafléd to .]
grasp the subtleties of the API. Common Misconceptions

Thus, when auditing code, we found that not only The most common misconception is that
was it necessary to check for unsafe usage of functionsstrncpy() NUL-terminates the destination stringhis
like grcpy() and strcat(), we also had to check for is only true, hwever, if length of the source string is
incorrect usage of strngf) and strncat(). Checking for less than the size parametéihis can be problematic
correct usage is notvadys obvious, especially in the When copying user input that may be of arbitrary length
case of “static” ariables or bffers allocated via cal- into a fixed size tffer. The safest way to use striy¢p
loc(), which are déctively pre-terminated We mame to i this situation is to pass it one less than the size of the
the conclusion that a foolproof alternatio srncpy() destination string, and then terminate the string by

and strncat() was needed, primarily to simplify the jobhand. Thatway you are guaranteed tovays hae a
NUL-terminated destination string. Strictly speaking, it

is not necessary to hand-terminate the string if it is acurrently comply with C9X).If no truncation occurred,
“static” variable or if it was allocated via calloc() since the programmer o has the length of the resulting

such strings are zeroed out when allocatedwever, string. Thisis useful since it is common practice to
relying on this feature is generally confusing to thosebuild a string with strncy() and strncat() and then to
persons who must later maintain the code. find the length of the result using strlenfvith strl-

There is also an implicate assumption that con-CPY() and stricat() the final strlen() is no longer neces-

verting code from strcpy() and strcat() to strncpy() and S&™-

strncat() causes negligible performancegrddation. Example la is a code fragment with a potential
With this is true of strncat(), the same cannot be saiduffer overflow (the HOME emironment variable is
for strncpy() since it zero-fills the remaining bytes not controlled by the user and can be of arbitrary length).
used to store the string being copied. This can lead to a

measurable performance hit when the size of the desti-

nation string is much greater than Fhe length of theg rcpy(path, homedir):

source string.The exact penalty for using strncpy() due ¢; - 4t (path, "/"):

to this behwior varies by CPU architecture and imple-
mentation.

strcat(path, ".foorc");
len = strlen(path);

The most common mistakrade with strncat() is
to use an incorrect size paramet@rhile strncat() does Example 1a:Code fragment using strcpy() and strcat()
guarantee to NUL-terminate the destination, you must
not count the space for the NUL in the size parameter

Most importantly this is not the size of the destination Example 1b is the same fragment wated to safely

strlng_ |t_self, rather it is the amount of spasilable. use strncp() and strncat() (note that wevea termi-
As this is almost atays a value that must be computed, \-ta the destination by hand).

as opposed to a known constant, it is often computed
incorrectly.

strncpy(path, honedir,

How do dricpy() and stricat() help things? si zeof (path) - 1);
a Path[sizeof (path) - 1] ='\0";
strncat(path, "/",

si zeof (path) - strlen(path) - 1);
strncat (path, ".foorc",

si zeof (path) - strlen(path) - 1);
len = strlen(path);

The strlcpy() and stricat() functions provide
consistent, unambiguous API to help the programme
write more bullet-proof code. First and foremost, both
stricpy() and stricat() guarantee to NUL-terminate the
destination string for all strings where theagi sze is
non-zero. Secondlyoth functions ta& the full size of
the destination string as a size parameieimost cases
this value is easily computed at compile time using the
si zeof operator Finally, neither strlcg() nor strl-
cat() zero-fill their destination strings (other than the
compulsatory NUL to terminate the string). Example 1c is a wial corversion to the strlcy()/strl-

The stricpy() and strlcat() functions return the cat() API. It has .the advantage of being as simple as
total length of the string tlyetried to create.For strl- Example 1a, but it does not takdvantage of the e

cpy() that is simply the length of the source; for strl- API's return value.
cat() that means the length of the destination (before
concatenation) plus the length of the sourte.check

for truncation, the programmer need only verify that thest r | cpy(pat h, homedir, sizeof (path));
return value is less than the size paramefdws, if strlcat(path, "/", sizeof(path));
truncation has occurred, the number of bytes needed tet r | cat (path, ".foorc", sizeof(path));
store the entire string is woknown and the program- |en = strlen(path);

mer may allocate more space and reycthg strings if

he or she wishes. The returalwe has similar seman- Example 1c:Trivial corversion to stricpy()/strlcat()
tics to the return alue of snprintf() as implemented in
BSD and as specified by the upcoming C9X specifica-

tion [4] (note that not all snprintf() implementations gjnce Example 1c is so easy to read and comprehend, it

Example 1b: Corverted to strncpy() and strncat()

is simple to add additional checks to it. In Example 1d,interface provided by strlgf) rather than using a cus-
we check the return value to nealaire there s tom interface.

enough space for the source string. If there was not, we
return an error This is slightly more complicated but in
addition to being more robust, it alseoals the final

To get a feel for the wrst-case scenario in com-
paring strncpy() and stricpy(), we ran a test program

strlen() call.

len = strlcpy(path, honedir,
si zeof (pat h);
if (len >= sizeof(path))
return (ENAMETOOLONG ;
len = strlcat(path, "/",
si zeof (pat h);
if (len >= sizeof(path))
return (ENAMETOOLONG ;

len = strlcat(path, ".foorc",

si zeof (path));
if (len >= sizeof(path))

that copies the string “this is just a test” 1000 times into
a 1024 byte bffer. This is somewhat unfair to
strncy(), since by using a small string and agtar
buffer strncpy() has to fill most of thauffer with NUL
characters. Ipractice, hwvever, it is common to use a
buffer that is much larger than the expected user input.
For instance, pathnameuffers are MAXRTHLEN
long (1024 bytes), Wt most filenames are significantly
shorter than that.The aerages run times in Table 1
were generated on an HP9000/425t with a 25Mhz
68040 CPU running OpenBSD 2.5 and a DEC AXP-
PCI166 with a 166Mhz alpha CPU also running
OpenBSD 2.5. In all cases, the same C versions of the
functions were used and the times are the “real time” as
reported by théime utility.

return (ENAMETOOLONG ;

cpu function time
Example 1d:Now with a check for truncation m68k strcy 0.137
m68k strncp 0.464
m68k stricy 0.14
alpha strcp 0.018
alpha strncp 0.10
Design decisions alpha stricg 0.02
A great deal of thought (and anfestrong words) went
into deciding just what the semantics of stylgpand . o
stricat() would be. The original idea was to raakl- As can be seen in Table 1, the timings for strngpy() are
cpy() and stricat() identical to strncpy() and strncat() f&r worse than those for strgf) and stricg(). Thisis
with the exception that tyewould alvays NUL-termi- Probably due not only to the cost of NUL padding b
nate the destination stringdowever, looking back on /S0 because the CRita cache is ctively being
the common use (and misuse) of strncat(vizawed us ~ flushed by the long stream of zeroes.
that the size parameter for stricat() should be the full
size of the string and not just the number of characters What stricpy() and stricat() are not
left unallocated. The return values started out as the i .
number of characters copied, since this was trivial to ~_ While strlcyy() and stricat() are well-suited for
get as a side effect of the gopr concatenation. \& dealing with fixed-size bffers, thg cannot replace
soon decided that a returalve with the same seman- Strncy() and strncat() in all case3here are still times
tics as snprintf(§ was a better choice since ives the where it is necessary to manipulatgfers that are not

programmer the most Ribility with respect to trunca- rué C strings (the strings istruct utnp for
tion detection and rewery. instance). Hwever, we would argue that such “pseudo

strings” should not be used inmm&ode since theare

Table 1. Performance timings in seconds

Peformance prone to misuse, and in our experience, a common
Programmers are starting teoi strncpy() due ~ Source of hgs. Additionally the stricpy() and stricat()
its poor performance when the targe‘[ﬁ’br is s|gn|f|- functions are not an attempt to “fix” string handllng In

cantly larger than the length of the source strifgr ~ C, they are designed to fit within the normal framerk
instance, the apache group [6] rep|aced calls td)f C strings. If you require string functions that Sup-
strncpy() with an internal function and noticed a perfor Port dynamically allocated, arbitrary sizedffers you
mance impreement [7]. Also, the ncurses [8] package May wish to gamine the “astring” package from mib
recently remued an @currence of strnggf), resulting ~ software [9].

in a factor of four speedup of thie utility. It is our

hope that, in the future, more programmers will use the

Who uses stricpy() and stricat()?

The strlcyy() and stricat() functions first appeared
in OpenBSD 2.4. The functions V& dso recently
been appreed for inclusion in a future version of
Solaris. Third-partypackages are starting to pick up
the API as well. For instance, the rsync [5] package
now uses strlcpy() and pwvides its own version if the
OS does not support it. It is our hope that other operat;
ing systems and applications will use stricpy() and strl-
cat() in the future, and that it will reeei gandards
acceptance at some time.

[1]
What's Next?

We dan to replace occurrences of strp@pand
strncat() with stricp() and stricat() in OpenBSD where [2]
it is sensible to do sowhile nev code in OpenBSD is
being written to use the weAPI, there is still a lare
amount of code that was ag@nted to use strncpy() and
strncat() during our original security audifo this day [3]
we continue to disa@r bugs due to incorrect usage of
strncy() and strncat() in existing codélpdating older
code to use strigg) and stricat() should sesvo peed
up some programs and uwepbugs in others.

[4]

Availability

The source code for strigf) and stricat() is
awailable free of charge and under a BSD-style licensd5]
as part of the OpenBSD operating systeviou may
also download the code and its associated manual pages
via anorymous ftp from ftp.openbsdgrin the direc-
tory /pub/OpenBSD/src/lib/libc/string. The source
code for stricpy() and stricat() is in sticp and strl- [6]
cat.c. Thedocumentation (which uses the tmac.doc
troff macros) may be found in strigf.

[7]
Author Information

Todd C. Miller has been wwolved in the free soft-
ware community since 1993 when he toaleromainte-
nance of the sudo packagele joined the OpenBSD [8]
project in 1996 as an aeti dcevdoper Todd belatedly
receved a BS in @Wmputer Science in 1997 from the
University of Colorado, Boulder (after years of prod-
ding). Todd has so far managed teo@ the corporate [9]
world and currently wrks as a Systems Administrator
at the Urnversity of Colorado, Boulder blissfully
ensconced in academia. He may be reached via email
at <Todd.Miller@cs.colorado.edu>.

Theo de Raadt has beewalved with free Unix
operating systems since 1990. Earlyvai@oments
included porting Minix to the sun3/50 and amignd

PDP-11 BSD 2.9 to a 68030 computérs one of the
founders of the NetBSD project, Theonrked on main-
taining and
including the sparc port and a free YP implementation
that is nav in use by most free systems. In 1995 Theo
created the OpenBSD project, which places focus on
security integrated cryptograph and code correctness.
Theo works full time on advancing OpenBSD. He may

improving man system components

be reached via email at <deraadt@openbsd.org>.

References

Aleph One. “Smashinghe Stack Br Fun And
Profit.” Phrack Magazine \Volume Seven, Issue
Forty-Nine.

BugTraq Mailing List Archves.
http://www.geek-girl.comfbgtrag/. This web
page contains searchable avelid the BugTaq
mailing list.

Brian W. Kernighan, Dennis M. RitchieThe C
Programming Language, Second Edition. Pren-
tice Hall, PTR, 1988.

InternationalStandards Q@anization.

“C9X FCD, Programming languages — C”
http://wwwold.dkuug.dk/jtc1/sc22/open/n2794/
This web page contains the current draft of the
upcoming C9X standard.

Andrew Tridgell, Paul Mackrras. The rsync
algorithm.
http://rsync.samba.gfrsync/tech_report/. This
web page contains a technical report describing
the rsync program.

The Apache Group. The Apache aly Serer.
http://www.apache.gr. Thisweb page contains
information on the Apache web server.

The Apache Group.New features in Apacheev-
sion 1.3. http://www.apache.org/docs/new_fea-
tures_1 3.html. Thisreb page contains wefea-
tures in version 1.3 of the Apache web server.

The Ncurses (n& curses) home page.
http://www.clark.net/pub/diaky/ncurses/. This
web page contains Ncurses information and dis-
tributions.

Forrest J. Cadlier lll. “Libmib allocated string
functions’ http://www.mibsoftware.com/lib-
mib/astring/. Thisweb page contains a descrip-
tion and implementation of a set of string func-
tions that dynamically allocate memory as neces-
sary.

