
strlcpy and strlcat — consistent, safe, string copy and concatenation.

Todd C. Miller
University of Colorado, Boulder

Theo de Raadt
OpenBSD project

Abstract
As the prevalence of buffer overflow attacks has increased, more and more programmers are using size or

length-bounded string functions such as strncpy() and strncat(). While this is certainly an encouraging trend, the
standard C string functions generally used were not really designed for the task. This paper describes an alternate,
intuitive, and consistent API designed with safe string copies in mind.

There are several problems encountered when strncpy() and strncat() are used as safe versions of strcpy() and str-
cat(). Bothfunctions deal with NUL-termination and the length parameter in different and non-intuitive ways that
confuse even experienced programmers.They also provide no easy way to detect when truncation occurs.Finally,
strncpy() zero-fills the remainder of the destination string, incurring a performance penalty. Of all these issues, the
confusion caused by the length parameters and the related issue of NUL-termination are most important.When we
audited the OpenBSD source tree for potential security holes we found rampant misuse of strncpy() and strncat().
While not all of these resulted in exploitable security holes, they made it clear that the rules for using strncpy() and
strncat() in safe string operations are widely misunderstood. The proposed replacement functions, strlcpy() and strl-
cat(), address these problems by presenting an API designed for safe string copies (see Figure 1 for function proto-
types). Bothfunctions guarantee NUL-termination, take as a length parameter the size of the string in bytes, and
provide an easy way to detect truncation. Neither function zero-fills unused bytes in the destination.

Introduction
In the middle of 1996, the authors, along with

other members of the OpenBSD project, undertook an
audit of the OpenBSD source tree looking for security
problems, starting with an emphasis on buffer over-
flows. Buffer overflows [1] had recently gotten a lot of
attention in forums such as BugTraq [2] and were being
widely exploited. We found a large number of over-
flows due to unbounded string copies using sprintf(),
strcpy() and strcat(), as well as loops that manipulated
strings without an explicate length check in the loop
invariant. Additionally, we also found many instances
where the programmer had tried to do safe string
manipulation with strncpy() and strncat() but failed to
grasp the subtleties of the API.

Thus, when auditing code, we found that not only
was it necessary to check for unsafe usage of functions
like strcpy() and strcat(), we also had to check for
incorrect usage of strncpy() and strncat(). Checking for
correct usage is not always obvious, especially in the
case of “static” variables or buffers allocated via cal-
loc(), which are effectively pre-terminated.We came to
the conclusion that a foolproof alternative to strncpy()
and strncat() was needed, primarily to simplify the job

of the programmer, but also to make code auditing eas-
ier.

size_t strlcpy(char *dst, \
const char *src, size_t size);

size_t strlcat(char *dst, \
const char *src, size_t size);

Figure 1: ANSI C prototypes for strlcpy() and strlcat()

Common Misconceptions
The most common misconception is that

strncpy() NUL-terminates the destination string.This
is only true, however, if length of the source string is
less than the size parameter. This can be problematic
when copying user input that may be of arbitrary length
into a fixed size buffer. The safest way to use strncpy()
in this situation is to pass it one less than the size of the
destination string, and then terminate the string by
hand. Thatway you are guaranteed to always have a
NUL-terminated destination string. Strictly speaking, it



is not necessary to hand-terminate the string if it is a
“static” variable or if it was allocated via calloc() since
such strings are zeroed out when allocated.However,
relying on this feature is generally confusing to those
persons who must later maintain the code.

There is also an implicate assumption that con-
verting code from strcpy() and strcat() to strncpy() and
strncat() causes negligible performance degradation.
With this is true of strncat(), the same cannot be said
for strncpy() since it zero-fills the remaining bytes not
used to store the string being copied. This can lead to a
measurable performance hit when the size of the desti-
nation string is much greater than the length of the
source string.The exact penalty for using strncpy() due
to this behavior varies by CPU architecture and imple-
mentation.

The most common mistake made with strncat() is
to use an incorrect size parameter. While strncat() does
guarantee to NUL-terminate the destination, you must
not count the space for the NUL in the size parameter.
Most importantly, this is not the size of the destination
string itself, rather it is the amount of space available.
As this is almost always a value that must be computed,
as opposed to a known constant, it is often computed
incorrectly.

How do strlcpy() and strlcat() help things?
The strlcpy() and strlcat() functions provide a

consistent, unambiguous API to help the programmer
write more bullet-proof code. First and foremost, both
strlcpy() and strlcat() guarantee to NUL-terminate the
destination string for all strings where the given size is
non-zero. Secondly, both functions take the full size of
the destination string as a size parameter. In most cases
this value is easily computed at compile time using the
sizeof operator. Finally, neither strlcpy() nor strl-
cat() zero-fill their destination strings (other than the
compulsatory NUL to terminate the string).

The strlcpy() and strlcat() functions return the
total length of the string they tried to create.For strl-
cpy() that is simply the length of the source; for strl-
cat() that means the length of the destination (before
concatenation) plus the length of the source.To check
for truncation, the programmer need only verify that the
return value is less than the size parameter. Thus, if
truncation has occurred, the number of bytes needed to
store the entire string is now known and the program-
mer may allocate more space and re-copy the strings if
he or she wishes. The return value has similar seman-
tics to the return value of snprintf() as implemented in
BSD and as specified by the upcoming C9X specifica-
tion [4] (note that not all snprintf() implementations

currently comply with C9X).If no truncation occurred,
the programmer now has the length of the resulting
string. This is useful since it is common practice to
build a string with strncpy() and strncat() and then to
find the length of the result using strlen().With strl-
cpy() and strlcat() the final strlen() is no longer neces-
sary.

Example 1a is a code fragment with a potential
buffer overflow (the HOME environment variable is
controlled by the user and can be of arbitrary length).

strcpy(path, homedir);
strcat(path, "/");
strcat(path, ".foorc");
len = strlen(path);

Example 1a:Code fragment using strcpy() and strcat()

Example 1b is the same fragment converted to safely
use strncpy() and strncat() (note that we have to termi-
nate the destination by hand).

strncpy(path, homedir,
sizeof(path) - 1);

path[sizeof(path) - 1] = ’\0’;
strncat(path, "/",

sizeof(path) - strlen(path) - 1);
strncat(path, ".foorc",

sizeof(path) - strlen(path) - 1);
len = strlen(path);

Example 1b:Converted to strncpy() and strncat()

Example 1c is a trivial conversion to the strlcpy()/strl-
cat() API. It has the advantage of being as simple as
Example 1a, but it does not take advantage of the new
API’s return value.

strlcpy(path, homedir, sizeof(path));
strlcat(path, "/", sizeof(path));
strlcat(path, ".foorc", sizeof(path));
len = strlen(path);

Example 1c:Trivial conversion to strlcpy()/strlcat()

Since Example 1c is so easy to read and comprehend, it



is simple to add additional checks to it. In Example 1d,
we check the return value to make sure there was
enough space for the source string. If there was not, we
return an error. This is slightly more complicated but in
addition to being more robust, it also avoids the final
strlen() call.

len = strlcpy(path, homedir,
sizeof(path);

if (len >= sizeof(path))
return (ENAMETOOLONG);

len = strlcat(path, "/",
sizeof(path);

if (len >= sizeof(path))
return (ENAMETOOLONG);

len = strlcat(path, ".foorc",
sizeof(path));

if (len >= sizeof(path))
return (ENAMETOOLONG);

Example 1d:Now with a check for truncation

Design decisions
A great deal of thought (and a few strong words) went
into deciding just what the semantics of strlcpy() and
strlcat() would be. The original idea was to make strl-
cpy() and strlcat() identical to strncpy() and strncat()
with the exception that they would always NUL-termi-
nate the destination string.However, looking back on
the common use (and misuse) of strncat() convinced us
that the size parameter for strlcat() should be the full
size of the string and not just the number of characters
left unallocated.The return values started out as the
number of characters copied, since this was trivial to
get as a side effect of the copy or concatenation. We
soon decided that a return value with the same seman-
tics as snprintf()’s was a better choice since it gives the
programmer the most flexibility with respect to trunca-
tion detection and recovery.

Performance
Programmers are starting to avoid strncpy() due

its poor performance when the target buffer is signifi-
cantly larger than the length of the source string.For
instance, the apache group [6] replaced calls to
strncpy() with an internal function and noticed a perfor-
mance improvement [7]. Also, the ncurses [8] package
recently removed an occurrence of strncpy(), resulting
in a factor of four speedup of thetic utility. It is our
hope that, in the future, more programmers will use the

interface provided by strlcpy() rather than using a cus-
tom interface.

To get a feel for the worst-case scenario in com-
paring strncpy() and strlcpy(), we ran a test program
that copies the string “this is just a test” 1000 times into
a 1024 byte buffer. This is somewhat unfair to
strncpy(), since by using a small string and a large
buffer strncpy() has to fill most of the buffer with NUL
characters. Inpractice, however, it is common to use a
buffer that is much larger than the expected user input.
For instance, pathname buffers are MAXPATHLEN
long (1024 bytes), but most filenames are significantly
shorter than that.The averages run times in Table 1
were generated on an HP9000/425t with a 25Mhz
68040 CPU running OpenBSD 2.5 and a DEC AXP-
PCI166 with a 166Mhz alpha CPU also running
OpenBSD 2.5. In all cases, the same C versions of the
functions were used and the times are the “real time” as
reported by thetime utility.

cpu function time

m68k strcpy 0.137
m68k strncpy 0.464
m68k strlcpy 0.14
alpha strcpy 0.018
alpha strncpy 0.10
alpha strlcpy 0.02

Table 1: Performance timings in seconds

As can be seen in Table 1, the timings for strncpy() are
far worse than those for strcpy() and strlcpy(). This is
probably due not only to the cost of NUL padding but
also because the CPU’s data cache is effectively being
flushed by the long stream of zeroes.

What strlcpy() and strlcat() are not
While strlcpy() and strlcat() are well-suited for

dealing with fixed-size buffers, they cannot replace
strncpy() and strncat() in all cases.There are still times
where it is necessary to manipulate buffers that are not
true C strings (the strings instruct utmp for
instance). However, we would argue that such “pseudo
strings” should not be used in new code since they are
prone to misuse, and in our experience, a common
source of bugs. Additionally, the strlcpy() and strlcat()
functions are not an attempt to “fix” string handling in
C, they are designed to fit within the normal framework
of C strings. If you require string functions that sup-
port dynamically allocated, arbitrary sized buffers you
may wish to examine the “astring” package from mib
software [9].



Who uses strlcpy() and strlcat()?
The strlcpy() and strlcat() functions first appeared

in OpenBSD 2.4. The functions have also recently
been approved for inclusion in a future version of
Solaris. Third-partypackages are starting to pick up
the API as well. For instance, the rsync [5] package
now uses strlcpy() and provides its own version if the
OS does not support it. It is our hope that other operat-
ing systems and applications will use strlcpy() and strl-
cat() in the future, and that it will receive standards
acceptance at some time.

What’ s Next?
We plan to replace occurrences of strncpy() and

strncat() with strlcpy() and strlcat() in OpenBSD where
it is sensible to do so.While new code in OpenBSD is
being written to use the new API, there is still a large
amount of code that was converted to use strncpy() and
strncat() during our original security audit.To this day,
we continue to discover bugs due to incorrect usage of
strncpy() and strncat() in existing code.Updating older
code to use strlcpy() and strlcat() should serve to speed
up some programs and uncover bugs in others.

Av ailability
The source code for strlcpy() and strlcat() is

available free of charge and under a BSD-style license
as part of the OpenBSD operating system.You may
also download the code and its associated manual pages
via anonymous ftp from ftp.openbsd.org in the direc-
tory /pub/OpenBSD/src/lib/libc/string. The source
code for strlcpy() and strlcat() is in strlcpy.c and strl-
cat.c. Thedocumentation (which uses the tmac.doc
troff macros) may be found in strlcpy.3.

Author Information
Todd C. Miller has been involved in the free soft-

ware community since 1993 when he took over mainte-
nance of the sudo package.He joined the OpenBSD
project in 1996 as an active dev eloper. Todd belatedly
received a BS in Computer Science in 1997 from the
University of Colorado, Boulder (after years of prod-
ding). Todd has so far managed to avoid the corporate
world and currently works as a Systems Administrator
at the University of Colorado, Boulder blissfully
ensconced in academia. He may be reached via email
at <Todd.Miller@cs.colorado.edu>.

Theo de Raadt has been involved with free Unix
operating systems since 1990. Early developments
included porting Minix to the sun3/50 and amiga, and

PDP-11 BSD 2.9 to a 68030 computer. As one of the
founders of the NetBSD project, Theo worked on main-
taining and improving many system components
including the sparc port and a free YP implementation
that is now in use by most free systems. In 1995 Theo
created the OpenBSD project, which places focus on
security, integrated cryptography, and code correctness.
Theo works full time on advancing OpenBSD. He may
be reached via email at <deraadt@openbsd.org>.

References
[1] Aleph One. “SmashingThe Stack For Fun And

Profit.” Phrack Magazine Volume Seven, Issue
Forty-Nine.

[2] BugTraq Mailing List Archives.
http://www.geek-girl.com/bugtraq/. This web
page contains searchable archives of the BugTraq
mailing list.

[3] Brian W. Kernighan, Dennis M. Ritchie.The C
Programming Language, Second Edition. Pren-
tice Hall, PTR, 1988.

[4] InternationalStandards Organization.
“C9X FCD, Programming languages — C”
http://wwwold.dkuug.dk/jtc1/sc22/open/n2794/
This web page contains the current draft of the
upcoming C9X standard.

[5] Andrew Tridgell, Paul Mackerras. The rsync
algorithm.
http://rsync.samba.org/rsync/tech_report/. This
web page contains a technical report describing
the rsync program.

[6] The Apache Group. The Apache Web Server.
http://www.apache.org. This web page contains
information on the Apache web server.

[7] TheApache Group.New features in Apache ver-
sion 1.3. http://www.apache.org/docs/new_fea-
tures_1_3.html. Thisweb page contains new fea-
tures in version 1.3 of the Apache web server.

[8] The Ncurses (new curses) home page.
http://www.clark.net/pub/dickey/ncurses/. This
web page contains Ncurses information and dis-
tributions.

[9] Forrest J. Cavalier III. “Libmib allocated string
functions.” http://www.mibsoftware.com/lib-
mib/astring/. Thisweb page contains a descrip-
tion and implementation of a set of string func-
tions that dynamically allocate memory as neces-
sary.


