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tIn modern operating systems, 
ryptographi
 �le sys-tems 
an prote
t 
on�dential data from unautho-rized a

ess. However, on
e an authorized pro
esshas a

essed data from a 
ryptographi
 �le system,the data 
an appear as plaintext in the unprote
tedvirtual memory ba
king store, even after systemshutdown. The solution des
ribed in this paper usesswap en
ryption for pro
esses in possession of 
on-�dential data. Volatile en
ryption keys are 
hosenrandomly, and remain valid only for short time peri-ods. Invalid en
ryption keys are deleted, e�e
tivelyerasing all data that was en
rypted with them. Theswap en
ryption system has been implemented forthe UVM [7℄ virtual memory system and its perfor-man
e is a

eptable.1 Introdu
tionMany 
omputer systems employ 
ryptographi
 �lesystems, e.g. CFS [4℄, TCFS [6℄ or en
ryption lay-ers [19℄, to prote
t 
on�dential data from pryingeyes. A user without the proper 
ryptographi
 keyis unable to read the 
ontents of the 
ryptographi
�le system, nor is he able to glean any useful infor-mation from it. However, ba
king store of the vir-tual memory system is generally unprote
ted. Anydata read by a pro
ess that was originally en
rypted
an be found as plaintext in swap storage if the pro-
ess was swapped out. It is possible for passwordsand pass phrases to reside in swap long after theyhave been typed in, even a
ross reboots.A user expe
ts that all 
on�dential data vanisheswith pro
ess termination, and is 
ompletely un-aware that data 
an remain on ba
king store. Andeven if she were aware of it, there is next to nothingshe 
an do to prevent its exposure.

If the integrity of the operating system is 
ompro-mised and an untrusted party gains root privilegesor physi
al a

ess to the ma
hine itself, she alsogains a

ess to the potentially sensitive data re-tained in ba
king store.Our solution to this problem is to en
rypt pages thatneed to be swapped out. These pages are de
ryptedwhen they are brought ba
k into physi
al memory,e.g. due to a page fault. After a pro
ess terminates,all its pages stored on ba
king store are invalid, sothere is no need to be able to de
rypt them; on the
ontrary, nobody should be able to de
rypt them.This suggests the use of volatile random keys thatexist only for short time periods.The remainder of this paper is organized as follows.Se
tion 2 provides further motivation for en
rypt-ing the ba
king store and des
ribes related work. InSe
tion 3 we give a brief overview of virtual mem-ory, note a se
urity problem of se
ondary storage,and dis
uss how it 
an be resolved with en
ryption.Se
tion 4 explains how we implemented swap en-
ryption. In Se
tion 5 we analyse how the pagingtimes and system throughput are a�e
ted. Finally,we 
on
lude in Se
tion 6.2 Related WorkComputer systems frequently pro
ess data that re-quires prote
tion from unauthorized users. Oftenit is enough to use a

ess 
ontrol me
hanisms ofthe operating system to determine who may a

essspe
i�
 data. In many 
ases a system also needsto be se
ured against physi
al atta
ks or prote
tedagainst se
urity 
ompromises that allow the 
ir
um-vention of a

ess 
ontrols. Blaze addresses dataprote
tion with a 
ryptographi
 �le system 
alledCFS by en
rypting all �le system data, preventinganyone without the proper 
ryptographi
 key from



a

essing its 
ontent [4℄. Anderson, Needham andShamir aim at hiding the existen
e of data from anatta
ker by using a \Steganographi
 File System"[1℄. A 
ryptographi
 key and the knowledge that a�le exists are needed to a

ess a �le's 
ontents. How-ever, se
urity depends on the whole system, and aninvestigation of the intera
tion with other system
omponents is essential.Neither paper looks 
arefully at its operating envi-ronment, nor do they take into 
onsideration that
on�dential data might inadvertently end up inba
king store. The storage of 
on�dential data ona swap devi
e may defeat the purpose of en
ryptionin CFS. Swap data 
an also be used to re
onstru
twhat �les are present in a system, thus defeatingthe purpose of steganography.Swap en
ryption is meant to prote
t 
on�dentialdata left on the ba
king store from intruders whohave gained physi
al a

ess to the storage medium.We observe that the same 
an be a
hieved by delet-ing all 
on�dential data on
e it is no longer refer-en
ed. However, Gutmann has shown that it is diÆ-
ult to delete thoroughly information from magneti
media or random-a

ess memory [16℄. He states:\the easiest way to solve the problem of erasing sen-sitive information from magneti
 media is to ensurethat it never gets to the media in the �rst pla
e.Although not pra
ti
al for general data, it is oftenworthwhile to take steps to keep parti
ularly impor-tant information su
h as en
ryption keys from everbeing written to disk."S
hneier and Kelsey des
ribe a se
ure log systemthat keeps the 
ontents of the log �les 
on�den-tial even if the system has been 
ompromised [24℄.While swap en
ryption is quite di�erent from se
urelogging, the atta
k s
enario and operating environ-ment is similar.There are other systems that modify the pagingbehavior of a virtual memory system. Notably,Fred Douglis' 
ompression 
a
he 
ompresses mem-ory pages to avoid 
ostly disk a

esses [10℄.3 Virtual Memory SystemOne purpose of virtual memory is to in
rease thesize of the address spa
e visible to pro
esses by
a
hing frequently-a

essed subsets of the address

spa
e in physi
al memory [2℄. Data that does not�t in physi
al memory is saved on se
ondary storageknown as the ba
king store. Paged out memory isrestored to physi
al memory when a pro
ess needsto a

ess it again [7℄.In many operating systems, the virtual memorypager daemon is responsible for reading and writingpages to and from their designated ba
king store.When a page has been written, it is marked as\
lean" and 
an be evi
ted from physi
al memory.The next time a pro
ess a

esses the virtual mem-ory that was asso
iated with this page, a page faulto

urs.If the page is still resident in physi
al memory, it ismarked as \re
ently used," and additionally \dirty"if the page fault is 
aused by a write a

ess. Other-wise, be
ause the page is no longer resident in phys-i
al memory, the pager allo
ates a page of physi
almemory and retrieves the data from ba
king store.3.1 Se
ondary StorageCompared to RAM speeds, se
ondary storage isusually made up from slow media, e.g. raw par-titions on disk drives. Unlike primary memory, se
-ondary storage is nonvolatile, and the data storedon it is preserved after a system shutdown. Depend-ing on usage patterns, a swap partition 
an retaindata for many months or even years.Con�dential data in a pro
ess' address spa
e mightbe saved on se
ondary storage and survive there be-yond the expe
tations of a user. She assumes thatall 
on�dential data is deleted with the terminationof the pro
ess. However, the data found by lookingat the 
ontent of several swap partitions of ma
hinesat the Center of Information Te
hnology Integra-tion in
luded: login passwords1, PGP pass phrases,email messages, 
ryptographi
 keys from ssh-agent,shell 
ommand histories, URLs, et
.To avoid this, we developed a system that makesdata on the ba
king store impossible for an atta
kerto read if it was written a 
ertain time prior to theoperating system's 
ompromise.One approa
h is to avoid swapping 
ompletely bynot using se
ondary storage at all. But this is1The author was amazed to �nd not only his 
urrent pass-word, but also older ones that had not been used for months.



not a general solution, and there are many appli-
ations and environments that require a virtual ad-dress spa
e bigger than the physi
al memory presentin the system.An appli
ation 
an prevent memory from beingswapped out by using the \mlo
k()" system 
all tolo
k the physi
al pages asso
iated with a virtual ad-dress range into memory [16℄. There are severaldisadvantages with this approa
h. It requires ap-pli
ations to be rewritten to use \mlo
k()", whi
hmight not be possible for lega
y appli
ations or dif-�
ult if it requires a 
ompli
ated analysis of whi
hparts of the memory 
ontain 
on�dential data. Inaddition, \mlo
k()" redu
es the opportunity of thevirtual memory system to evi
t stale pages fromphysi
al memory, whi
h 
an have a severe impa
ton system performan
e.In general, it is not desirable to prevent the systemfrom swapping memory to the disk. Instead, en
ryp-tion 
an be used to prote
t 
on�dential data when itis written to se
ondary storage by the pager. A userprogram 
ould install its own en
rypting pager [2℄.This would lead to greater 
omplexity, require mod-i�
ation of appli
ations and poses diÆ
ult de
isionsabout whi
h 
ryptosystem to use. If a 
ryptographi
�le system like CFS [4℄ were available, the virtualmemory pager 
ould be 
on�gured to swap to a �lethat resided on an en
rypted �le system.However, in 
ontrast to 
ommon use of en
ryp-tion [20℄, we require di�erent 
hara
teristi
s for our
ryptographi
 system:� When a page on ba
king store is no longer refer-en
ed by its owner, the de
ryption key for thatpage should be irretrievably lost after a suitabletime period (tR) has passed.� Only the virtual memory pager should be ableto de
rypt data read from the ba
king store.Clearly, the best prote
tion is a
hieved with tR = 0.The de
ryption key, and indire
tly the page's 
on-tent, is irretrievably removed immediately when thepage is no longer referen
ed. This behavior meetsthe user's expe
tation that 
on�dential data in apro
ess' address spa
e is deleted with the termina-tion of the pro
ess.However, this is diÆ
ult to a
hieve, and we haveto trade o� se
urity against performan
e. Often, a

tR > 0 is still a

eptable. In the initial implemen-tation, we only guarantee tR � system uptime, butattempt to minimize the average tR.This implies the use of volatile en
ryption keys,valid maximally for the duration of the system's up-time. Su
h keys are similar to ephemeral keys usedto a
hieve perfe
t forward se
re
y [9℄. A volatile keyis 
ompletely unrelated to all other keys. Knowledgeof it does not allow the de
ryption of old data onse
ondary storage. En
ryption keys are used onlyby the virtual memory pager and 
an be generatedon demand when they are required, eliminating theneed for 
ompli
ated key management.On the other hand, swapping to a 
ryptographi
�le system does not ful�ll either of the two require-ments. Key management is an integral part of anen
rypting �le system [5℄. Consequently, permanentnonvolatile en
ryption keys are present, making itpossible to read the data on the swap storage afterthe system has been shut down. Furthermore, a userwith a

ess rights to the swap �le on the en
rypted�le system - usually the root user - 
an dire
tly readits 
ontents.Instead, we employ en
ryption at the pager level.Pages that are swapped out are (optionally) en-
rypted, and en
rypted pages that are read fromse
ondary storage are de
rypted.
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on ba
king store. Figure 1 shows the result for adesktop session.Most pages remain in the ba
king store for only afew minutes. The strong temporal 
orrelation be-tween swapping and zeroing 
an result in unne
es-sary 
leaning of pages that will be overwritten im-mediately, and will impa
t on system performan
edue to expensive write operations. Zeroing pagesalso fails to prote
t against physi
al atta
ks thatprevent writes to se
ondary storage, e.g. an atta
kerstealing disks or turning o� the system's power sup-ply.In summary, en
ryption has the following advan-tages over physi
ally zeroing pages on the ba
kingstore.� Deleting data by erasing it on disk in
urs extraseek time and additional I/O for writing. Onthe other hand, with en
ryption the 
ontent ofa page disappears when its respe
tive en
ryp-tion key is deleted. Furthermore, en
rypting apage is fast 
ompared to writing it, and the en-
ryption 
ost is spread evenly over the wholeswapping pro
ess.� En
ryption provides better prote
tion againstphysi
al atta
ks. Mere possession of the diskdrive is not suÆ
ient to read its 
ontent. The
orre
t en
ryption key is required, but manyphysi
al atta
ks disrupt the operation of thema
hine; the 
ontent of physi
al memory islost, and thus also the en
ryption key. Ad-ditionally, en
ryption prevents \
ompromisingemanations" 
aused by data transfers to se
-ondary storage, i.e. ele
tromagneti
 radiationthat 
arries sensitive information and 
an bere
eived remotely [11℄.� Reliably deleting data from magneti
 media isdiÆ
ult, a problem that does not apply whenusing en
ryption [16℄.In the next se
tion, we des
ribe our implementationof swap en
ryption.4 Swap En
ryptionSwap en
ryption divides naturally into two separatefun
tions: en
ryption and de
ryption. The former

requires a poli
y de
ision about when to en
ryptpages. The latter requires knowing whi
h pages readfrom swap need to be de
rypted. The en
ryptionpoli
y 
an be very simple, e.g. all pages that goto swap will be en
rypted. A more sophisti
atedpoli
y might en
rypt only pages of pro
esses thathave read data from a 
ryptographi
 �le system.The enumeration of su
h poli
ies is the subje
t offuture work.In all 
ases, though, the de
ryption is 
ompletelyindependent from the de
ision to en
rypt. For thatreason, we keep a bitmap in the swap devi
e thatindi
ates for ea
h page whether it needs to be de-
rypted after it has been read. Thus, it is possibleto 
hange the en
ryption poli
y during the runtimeof the system without a�e
ting the de
ryption ofpages that have been en
rypted while a di�erentpoli
y was in e�e
t.To a
hieve lower upper bounds on the window ofvulnerability (tR), we divide the ba
king store intose
tions of 512 KByte2, and give ea
h se
tion itsown key. A key 
onsists of a 128-bit en
ryption key,a referen
e 
ounter and an expiration time. For aba
king store of 256 MByte, keys o

upy 14 KByteof memory.A se
tion's 128-bit 
ryptographi
 key is 
reated ran-domly the �rst time it is needed, and its referen
e
ounter is set to 0. Ea
h time a new page is en-
rypted with it, the 
ounter is in
remented.When a page is freed on the ba
king store, the ref-eren
e 
ounter of the respe
tive key is de
remented.A key is immediately deleted when the referen
e
ounter rea
hes 0. Thus, all data en
rypted withthat key 
an no longer be de
rypted and is e�e
-tively erased.At the moment the �rst page in a se
tion be
omesunreferen
ed, its en
ryption key is set to expire aftera time period tR. After tR has been rea
hed, allpages that referen
e it have to be re-en
rypted witha new key. The number of pages that need to bepro
essed is bounded by the se
tion size, so thatthe additional en
ryption overhead is 
on�gurable.The framework for expiration exists, but we haveyet to implement re-en
ryption. However, on
e thishas been done, we 
an make stri
ter guarantees forthe time that pages remain readable on the ba
king2The se
tion size is 
on�gurable, and depends on howmu
h memory is available for 
ryptographi
 keys.



store.Figure 2 des
ribes the paging pro
ess in severalsteps, and shows where en
ryption and de
ryptiontake pla
e:1. A user pro
ess referen
es memory.2. If the referen
ed address has a valid mapping,the data is a

essed from the mapped physi
alpage.3. If the referen
ed address has an invalid map-ping, a page fault o

urs.4. The pager reads the 
orresponding page fromse
ondary storage.5. The page is de
rypted if its entry in the bitmapindi
ates that it is en
rypted.6. Finally, the page is mapped into physi
al mem-ory, and the page fault is resolved.7. Conversely, if the page daemon de
ides to evi
ta page from physi
al memory,8. the pager en
rypts the page with the en
ryptionkey of the se
tion that the page belongs to.(a) If the se
tion does not have an en
ryp-tion key, e.g. it is the �rst en
ryption, avolatile en
ryption key is initialized fromthe kernel's entropy pool.9. Afterwards, the page is written to se
ondarystorage.There is one 
entral di�eren
e between page en-
ryption and de
ryption. Pages 
an be de
ryptedin pla
e be
ause immediately after they have beenread into memory, no pro
ess is allowed to a

essthese pages until they have been de
rypted. On theother hand, even after a page has been swapped out,a pro
ess may a

ess it at any time. This pre
ludesin-pla
e en
ryption. Instead, we have to allo
atepages into whi
h to store temporarily the en
ryp-tion result, pla
ing additional pressure on the al-ready memory limited VM system.The volatile keys are stored in an unmanaged partof the kernel memory. As a result, they are neverpaged out.
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Figure 2: An overview of the swap en
ryption pro
ess.4.1 Cipher Sele
tionTo be suitable for swap en
ryption, a 
ipher needsto ful�ll at least three important 
riteria:� En
ryption and de
ryption need to be fast 
om-pared to disk I/O, so that the en
ryption doesnot be
ome the limiting fa
tor in the swappingpro
ess.� The generation of a 
ipher's key s
heduleshould be inexpensive 
ompared to en
ryptinga page, so that 
hanging the key s
hedule doesnot a�e
t performan
e. The key s
hedule of a
ipher is usually larger than its en
ryption key.To 
onserve system memory we should re
om-pute it every time we swit
h en
ryption keys,e.g. the en
ryption key 
hanges when pages arewritten to di�erent se
tions.� The 
ipher has to support en
ryption and de-
ryption on a page by page basis, sin
e page inand page out are not sequential. This pre
ludesthe use of a stream 
ipher.Initially, we planned to employ S
hneier's Blow-�sh en
ryption algorithm [23℄. Its software imple-mentation is very fast, and it has been in use forseveral years without any apparent se
urity 
aws.Nonetheless, Blow�sh has one 
riti
al drawba
k.The 
omputation of its key s
hedule is very expen-sive, and requires more than 4 KByte of memory.



For that reason, 
omputing the key s
hedule whenit is needed is too expensive, and pre
omputation isnot possible due to large memory requirements.Based on our environmental 
onstraints, the 
ipherthat mat
hes our needs the best is Rijndael [8℄. Wedes
ribe it in the next se
tion.4.2 RijndaelRijndael is one of the �nalists in the advan
ed en-
ryption standard (AES) 
ompetition. It is a vari-able blo
k and key length 
ipher. In 
ontrast tomany other blo
k 
iphers, its round transformationdoes not have the Feistel stru
ture. Instead, theround transformation is 
omposed of distin
t lay-ers: a linear mixing layer, a non-linear layer, and akey addition layer. Rijndael's design tries to a
hieveresistan
e against all known atta
ks while maintain-ing simpli
ity [8℄.Compared to Blow�sh, Rijndael is faster in all as-pe
ts, but less studied [12℄. We de
ided to use Rijn-dael with 128-bit blo
ks and 128-bit keys. With theoptimized C implementation by Gladman [13℄, theen
ryption key s
hedule 
an be 
omputed in 305 
y-
les on a Pentium Pro; the de
ryption key s
hedule
osts 1398 
y
les. A blo
k 
an be en
rypted in 374
y
les, and blo
k de
ryption takes 352 
y
les.However, be
ause all en
ryption and de
ryption isdone on 4 KByte units, the 
ost of the key s
hedule
omputation is amortized. Therefore, even if we
hange the key s
hedule every time, the en
ryption
ost is only 375 
y
les on average, and for de
ryptionit is 357 
y
les.Normally, the overall performan
e of an en
ryp-tion algorithm is in
uen
ed by word 
onversion toa

ommodate little and big endian ar
hite
tures.However, be
ause en
ryption and de
ryption hap-pen on the same ma
hine, the word order of thealgorithm's output is not relevant, and we do notneed to take endianness into 
onsideration.We use Rijndael in 
ipher-blo
k 
haining (CBC)mode. The CBC mode of operation involves the useof a 128-bit initialization ve
tor. Identi
al plaintextblo
ks en
rypted under the same key but di�erentIV s, produ
e di�erent 
ipher blo
ks. With 
0 = IV ,the result of the en
ryption is de�ned as
i = EK(
i�1 � xi);

where the xi are the plaintext and 
i the 
iphertextblo
ks. The de
ryption is similarxi = 
i�1 �E�1K (
i):For swap en
ryption, the initial 128-bit IV is the64-bit blo
k number to whi
h the page is written,
on
atenated with its bitwise 
omplement. This en-sures that ea
h page is en
rypted uniquely.Caution is indi
ated be
ause 
hanging the IV in se-quential in
rements for adja
ent pages may resultin only small input di�eren
es to the en
ryptionfun
tion. The atta
ks des
ribed in \From Di�eren-tial Cryptanalysis to Ciphertext-Only Atta
ks" [3℄might apply in su
h a situation. For that reason,we en
rypt the blo
k number and use that for theIV . Biryukov and Kushilevitz also state, \Anothermethod of IV 
hoi
e is the en
ryption of the data-gram sequen
e numbers [...℄, and sending [the℄ IV in[the℄ 
lear (expli
it IV method) [...℄. This methodis also very vulnerable to our analysis, [...℄." Nev-ertheless, in our 
ase the IV is not expli
it, and noIV di�eren
es 
an be observed dire
tly.4.3 Pseudo-random GeneratorTo initialize a volatile en
ryption key we require asour
e of random bits. The generation of random-ness with deterministi
 
omputers is very hard. Inparti
ular, we do not strive to 
reate perfe
t ran-domness 
hara
terized by the uniform distribution.Instead, we use pseudo-random generators.A pseudo-random generator has the goal that itsoutput is 
omputationally indistinguishable fromthe uniform distribution, while its exe
ution mustbe feasible [14℄. A pseudo-random generator is re-alized by a stret
hing fun
tion g that maps stringsof length n to strings of length l(n) > n. If X isa random variable uniformly distributed on stringsof length n then g(X) appears to be uniformly dis-tributed on strings of length l(n) [18℄.For our purpose, we use the pseudo-random num-ber generator (PRNG) provided by the OpenBSDkernel [21℄. The PRNG is a 
ryptographi
 stream
ipher that uses a sour
e of strong randomness3 for3The term \sour
e of strong randomness" represents agenerator whose output is not really random, but dependson so many entropy providing physi
al pro
esses that an at-ta
ker 
an not pra
ti
ally predi
t its output.



initialization and reseeding. This sour
e is referredto as the \entropy pool."Nonetheless, the problem on how to a

umulatestrong randomness for the entropy pool remains.Fortunately, a multi-user operating system hasmany external events from whi
h it 
an derive somerandomness. Gutmann des
ribes a generi
 frame-work for a randomness pool [17℄.In OpenBSD, the entropy poolP := fp1; p2; : : : ; p128g
onsists of 128 32-bit words. To in
rease the pool'srandomness the kernel 
olle
ts measurements fromvarious physi
al events: the inter-keypress timingfrom terminals, the mouse interrupt timing and thereported position of the mouse 
ursor, the arrivaltime of network pa
kets, and the �nishing time ofdisk requests.The measured values from these sour
es are addedto the entropy pool by a mixing fun
tion. For ea
hvalue, the fun
tion repla
es one word in the pool asfollows: pi  u� pi+99 � pi+59 � pi+31 �pi+9 � pi+7 � pi;where i is the 
urrent position in the pool, and u the32-bit word that is added. Index addition is modulo128. After a value has been added i is de
remented.To estimate the randomness in the pool, the entropyis measured by a heuristi
 based on the derivativesof di�eren
es in the input values.A random seed is extra
ted from the entropy poolas follows: First, the 
on
atenation of p1p2 : : : p128is given as input to an MD5 hash [22℄. Se
ond,the internal state of the MD5 hash for the previous
omputation is added into the entropy pool. Third,the resulting pool is fed on
e more into the MD5hash. Finally, the message digest is 
al
ulated. Theoutput is \folded" in half by XOR-ing its upper andlower word. The resulting 64 bits are returned asthe seed.The stret
hing fun
tion is implemented by ARC4,a 
ipher equivalent to RSADSI's RC4 [25℄. The 
i-pher has an internal memory size of M = n2n+2n,with in our 
ase n = 8. We use the random seedsextra
ted from the entropy pool to initialize the Mbits. The output of RC4 is expe
ted to 
y
le after2M�1 iterations. However, Goli�
 showed that a 
or-relation between the se
ond binary derivative of the

least signi�
ant bit output sequen
e and 1 
an bedete
ted in signi�
antly fewer iterations [15℄, whi
hallows the di�erentiation of RC4 from a uniform dis-tribution. We 
an avoid this problem by reseedingRC4's internal state before the number of 
riti
aliterations has been rea
hed. In fa
t, the implemen-tation in OpenBSD reseeds the ARC4 every timeenough new entropy has been a

umulated.The kernel provides the \ar
4random(3)" fun
tionto obtain a 32-bit word from the pseudo-randomnumber generator.The volatile key of a se
tion is 
reated by �lling itwith the output from \ar
4random(3)." We hopethat between the time the system has been bootedand the �rst swap en
ryption suÆ
ient randomnessis available in the kernel entropy pool to ensuregood randomness in the RC4 output. Nonetheless,it should be noted that this 
onstru
tion does not
reate a provably pseudo-random generator as de-s
ribed in the beginning of this se
tion.5 Performan
e EvaluationIn the following, we analyse the e�e
t of swap en-
ryption on the paging behavior. We look at pageen
ryption and de
ryption times, and assess theruntime of appli
ations with large working sets.All measurements were performed on an OpenBSD2.6 system with 128 MByte main memory and a333 MHz Celeron pro
essor. The swap partitionwas on a 6 GByte Ultra-DMA IDE disk, IBMmodel DBCA-206480 running at 4200 revolutionsper minute. The operating system 
an sustainan average blo
k write rate of 7.5 MByte/s and ablo
k read rate of 6.3 MByte/s. OpenBSD uses theUVM [7℄ virtual memory system.5.1 Mi
ro Ben
hmarkOur mi
ro ben
hmark measures the time it takesto en
rypt one page. A test program allo
ates 200MByte of memory, and �lls the memory sequentiallywith zeros. Afterwards, it reads the allo
ated mem-ory from the beginning in sequential order. Thepro
ess is repeated three times.



We use kernel pro�ling to measure page en
ryptionfrequen
y, and the 
umulative time of the en
ryp-tion fun
tion. The kernel fun
tion \swap en
rypt()"is 
alled 155336 times with a 
umulative runningtime of 67:96 se
onds. One 4 KByte page 
ouldbe en
rypted in 0:44 ms, resulting in an en
ryptionbandwidth of 8:9 MByte/s. The total amount ofmemory en
rypted is 600 MByte.In UVM, writes to the ba
king store are asyn-
hronous and reads are syn
hronous. To determineif I/O is still the bottlene
k of the swapping pro-
ess, we measured the runtime of the test programfor di�erent memory sizes, with and without swapen
ryption. We measure an in
rease in runtimeof about 14% with en
ryption. To measure asyn-
hronous writes, we modi�ed the test program towrite only to memory. The runtime in
rease of 26%- 36% is due to allo
ation of new pages that store theen
rypted pages until they are written to disk, thus
ausing the system to swap more often. Figure 3shows a graph of the results.
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Figure 3: Performan
e di�eren
e between swap en-
ryption and normal swapping when pages are a

essedsequentially, illustrating the di�eren
e between asyn-
hronous write and syn
hronous reads.5.2 Ma
ro Ben
hmarkTo judge the impa
t of swap en
ryption on ap-pli
ation programs, we used ImageMagi
k to pro-
ess a 960 � 1280 image with a 16-bit 
olorspa
e.The image was magni�ed and then rotated by 24o.The runtimes for di�erent magni�
ation fa
tors areshown in Table 1.

No En
ryption En
ryptionMagni- Major Runtime Major Runtime�
ation Faults (in se
) Faults (in se
)2:30� 0.4 103 49s 0.4 103 49s2:35� 19 103 145s 18 103 147s2:40� 22 103 169s 22 103 180s2:50� 24 103 179s 24 103 276sTable 1: Runtime of image pro
essing tool for dif-ferent magni�
ation fa
tors.The table 
ompares the major faults and programruntime for a system that does not use en
ryptionagainst a system that does. A major fault is a pagefault that requires I/O to servi
e it, and does nottake into a

ount the pages that have been pagedout by the paging daemon.With in
reasing magni�
ation fa
tor, the workingset size of the program grows larger. We measurea sharp in
rease of the running time with swap en-
ryption for a magni�
ation fa
tor of 2:5. However,for the other magni�
ation fa
tors the program run-time is not a�e
ted that mu
h, even though nearlyhalf of the program's memory was on ba
king store.Thus, we believe that the overhead 
aused by en-
ryption is tolerable.6 Con
lusionCon�dential data 
an remain on ba
king store longafter the pro
ess to whi
h the data originally be-longed has terminated. This is 
ontrary to a user'sexpe
tations that all 
on�dential data is deletedwith the termination of the pro
ess. An investi-gation of se
ondary storage of ma
hines at the Cen-ter for Information Te
hnology Integration revealedvery 
on�dential information, su
h as the author'sPGP pass phrase.We investigate several alternative solutions to pre-vent 
on�dential data from remaining on ba
kingstore, e.g. erasing data physi
ally from the ba
kingstore after pages on it be
ome unreferen
ed. How-ever, we �nd that en
ryption of data on the ba
kingstore with volatile random keys has several advan-tages over other approa
hes:� The 
ontent of a page disappears when its re-spe
tive en
ryption key is deleted, a very fast



operation.� En
ryption provides prote
tion against physi-
al atta
ks, e.g. an atta
ker stealing the diskthat 
ontains the swap partitionEn
ryption enables us to make the guarantee thatunreferen
ed pages on the ba
king store be
ome un-readable after a suitable time period upper boundedby system uptime has passed.We have demonstrated that the performan
e of ouren
ryption system is a

eptable, and it proves to bea viable solution.The software is freely available as part of theOpenBSD operating sytem and 
an also be obtainedby 
onta
ting the author.7 A
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