
Porting OpenBSD OpenBSD/zaurus

Porting OpenBSD

Niall O’Higgins <niallo@openbsd.org>
Uwe Stühler <uwe@openbsd.org>

OpenCON, 2005

mailto:niallo@openbsd.org
mailto:uwe@openbsd.org


Porting OpenBSD OpenBSD/zaurus

Outline

1 Porting OpenBSD
What It Takes
Preparation
Cross-Development
The Boot Loader
Building The Kernel
Adapting Startup Code
Writing Device Drivers
Going Native
Subsequent Work

2 OpenBSD/zaurus
History
What It Took
What Was Done
Tricky Parts
Current Status
Future Plans



Porting OpenBSD OpenBSD/zaurus

What It Takes

What It Takes

motivation, some experience, time and persistence



Porting OpenBSD OpenBSD/zaurus

What It Takes

What It Takes

motivation, some experience, time and persistence
about 20 developers having the machines



Porting OpenBSD OpenBSD/zaurus

What It Takes

What It Takes

motivation, some experience, time and persistence
about 20 developers having the machines
a user community



Porting OpenBSD OpenBSD/zaurus

What It Takes

What It Takes

motivation, some experience, time and persistence
about 20 developers having the machines
a user community
“full” support includes that:

release install media is known to work
architecture can compile itself
most of the basic tools exist on the architecture
snapshots are made available on a regular basis
packages exist



Porting OpenBSD OpenBSD/zaurus

Preparation

Preparation

get a hold of documentation



Porting OpenBSD OpenBSD/zaurus

Preparation

Preparation

get a hold of documentation
familiarise yourself with the architecture



Porting OpenBSD OpenBSD/zaurus

Preparation

Preparation

get a hold of documentation
familiarise yourself with the architecture
start from an existing port that is very similar



Porting OpenBSD OpenBSD/zaurus

Preparation

Preparation

get a hold of documentation
familiarise yourself with the architecture
start from an existing port that is very similar
copy and rename machine-dependent sources

sys/arch/machine/...
share/man/mann/mann.machine/...
etc/etc.machine/...
distrib/...



Porting OpenBSD OpenBSD/zaurus

Preparation

Preparation

get a hold of documentation
familiarise yourself with the architecture
start from an existing port that is very similar
copy and rename machine-dependent sources

sys/arch/machine/...
share/man/mann/mann.machine/...
etc/etc.machine/...
distrib/...

poke around in interesting places

opportunity to learn about things



Porting OpenBSD OpenBSD/zaurus

Preparation

Preparation

get a hold of documentation
familiarise yourself with the architecture
start from an existing port that is very similar
copy and rename machine-dependent sources

sys/arch/machine/...
share/man/mann/mann.machine/...
etc/etc.machine/...
distrib/...

poke around in interesting places and try to remember
what you’ve changed

opportunity to learn about things
it’s easy to make mistakes and some things can’t be tested
immediately



Porting OpenBSD OpenBSD/zaurus

Cross-Development

Cross-Development

to start the port, normally you have to cross-compile



Porting OpenBSD OpenBSD/zaurus

Cross-Development

Cross-Development

to start the port, normally you have to cross-compile
we have to use the GNU compiler toolchain (binutils, gcc,
gdb, ...)

makes it difficult to port OpenBSD to architectures not
already supported by the toolchain



Porting OpenBSD OpenBSD/zaurus

Cross-Development

Cross-Development

to start the port, normally you have to cross-compile
we have to use the GNU compiler toolchain (binutils, gcc,
gdb, ...)

makes it difficult to port OpenBSD to architectures not
already supported by the toolchain

“make cross-tools” and “make cross-distrib” are there to
aid the porter



Porting OpenBSD OpenBSD/zaurus

Cross-Development

Cross-Development

to start the port, normally you have to cross-compile
we have to use the GNU compiler toolchain (binutils, gcc,
gdb, ...)

makes it difficult to port OpenBSD to architectures not
already supported by the toolchain

“make cross-tools” and “make cross-distrib” are there to
aid the porter
cross-compiling is not used once the port can compile itself



Porting OpenBSD OpenBSD/zaurus

Cross-Development

Cross-Development

to start the port, normally you have to cross-compile
we have to use the GNU compiler toolchain (binutils, gcc,
gdb, ...)

makes it difficult to port OpenBSD to architectures not
already supported by the toolchain

“make cross-tools” and “make cross-distrib” are there to
aid the porter
cross-compiling is not used once the port can compile itself
native builds are a good way to test the machine and a new
port



Porting OpenBSD OpenBSD/zaurus

Cross-Development

Cross-Development

to start the port, normally you have to cross-compile
we have to use the GNU compiler toolchain (binutils, gcc,
gdb, ...)

makes it difficult to port OpenBSD to architectures not
already supported by the toolchain

“make cross-tools” and “make cross-distrib” are there to
aid the porter
cross-compiling is not used once the port can compile itself
native builds are a good way to test the machine and a new
port
as a result, we switch to native builds as soon as possible



Porting OpenBSD OpenBSD/zaurus

The Boot Loader

The Boot Loader

need a way to load the kernel (JTAG is nice, but not always
available)



Porting OpenBSD OpenBSD/zaurus

The Boot Loader

The Boot Loader

need a way to load the kernel (JTAG is nice, but not always
available)
loader can be 50 lines of assembly or a big C program



Porting OpenBSD OpenBSD/zaurus

The Boot Loader

The Boot Loader

need a way to load the kernel (JTAG is nice, but not always
available)
loader can be 50 lines of assembly or a big C program
in the long run you want to port boot(8) - the stand-alone
kernel

easier to port than the BSD kernel: does not use the full
build infrastructure
harder if you have no BIOS, Open Firmware-compliant or
similarly sophisticated firmware to call out to (for console
and disk access, device tree traversal, etc.)
but boot(8) can run on and replace another operating
system in memory - e.g. Linux :)

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

The Boot Loader

The Boot Loader

need a way to load the kernel (JTAG is nice, but not always
available)
loader can be 50 lines of assembly or a big C program
in the long run you want to port boot(8) - the stand-alone
kernel

easier to port than the BSD kernel: does not use the full
build infrastructure
harder if you have no BIOS, Open Firmware-compliant or
similarly sophisticated firmware to call out to (for console
and disk access, device tree traversal, etc.)
but boot(8) can run on and replace another operating
system in memory - e.g. Linux :)

good firmware can be used to simplify things at runtime
like OpenBoot callouts on “sparc” to traverse the device
tree or print characters on the console

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Building The Kernel

Building The Kernel

get familiar with config(8) and files.conf(5)

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=files.conf&sektion=5


Porting OpenBSD OpenBSD/zaurus

Building The Kernel

Building The Kernel

get familiar with config(8) and files.conf(5)
“multi-arch” platforms (e.g. cats, macppc, sgi, solbourne,
zaurus) vs. “single-arch” platforms (amd64, i386, hppa,
sparc, sparc64)

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=files.conf&sektion=5


Porting OpenBSD OpenBSD/zaurus

Building The Kernel

Building The Kernel

get familiar with config(8) and files.conf(5)
“multi-arch” platforms (e.g. cats, macppc, sgi, solbourne,
zaurus) vs. “single-arch” platforms (amd64, i386, hppa,
sparc, sparc64)
work on RAMDISK first, then on GENERIC

with bsd.rd you can interactively test and debug the kernel
and drivers

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=files.conf&sektion=5


Porting OpenBSD OpenBSD/zaurus

Building The Kernel

Building The Kernel

get familiar with config(8) and files.conf(5)
“multi-arch” platforms (e.g. cats, macppc, sgi, solbourne,
zaurus) vs. “single-arch” platforms (amd64, i386, hppa,
sparc, sparc64)
work on RAMDISK first, then on GENERIC

with bsd.rd you can interactively test and debug the kernel
and drivers

building bsd.rd is only slightly more complicatd
install crunch tools from distrib/crunch
run make in distrib/machine/ramdisk
rdsetroot may give you problems during cross-development

http://www.openbsd.org/cgi-bin/man.cgi?query=config&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=files.conf&sektion=5


Porting OpenBSD OpenBSD/zaurus

Adapting Startup Code

Adapting Startup Code

begin with start() (locore.S)
disable interrupts
bring the processor into a known state
initialise or disable MMU and caching
relocate the kernel image
initialise interrupt controller
pick up boot arguments
initialise early console (serial)
find memory and initialise pmap(9) backend

map the kernel
set up stack(s)
trap/vector tables

call main()

http://www.openbsd.org/cgi-bin/man.cgi?query=pmap&sektion=9


Porting OpenBSD OpenBSD/zaurus

Adapting Startup Code

Adapting Startup Code

begin with start() (locore.S)
disable interrupts
bring the processor into a known state
initialise or disable MMU and caching
relocate the kernel image
initialise interrupt controller
pick up boot arguments
initialise early console (serial)
find memory and initialise pmap(9) backend

map the kernel
set up stack(s)
trap/vector tables

call main()

http://www.openbsd.org/cgi-bin/man.cgi?query=pmap&sektion=9


Porting OpenBSD OpenBSD/zaurus

Adapting Startup Code

Adapting Startup Code

begin with start() (locore.S)
disable interrupts
bring the processor into a known state
initialise or disable MMU and caching
relocate the kernel image
initialise interrupt controller
pick up boot arguments
initialise early console (serial)
find memory and initialise pmap(9) backend

map the kernel
set up stack(s)
trap/vector tables

call main()

use reliable, unbuffered indicators for debugging (LED)

http://www.openbsd.org/cgi-bin/man.cgi?query=pmap&sektion=9


Porting OpenBSD OpenBSD/zaurus

Writing Device Drivers

Writing Device Drivers

some drivers have to be done first:
serial port (or another console device)
interrupt controller
crucial machine-dependent bus drivers such as
mainbus(4) or pxaip(4)

http://www.openbsd.org/cgi-bin/man.cgi?query=mainbus&sektion=4&arch=mac68k
http://www.openbsd.org/cgi-bin/man.cgi?query=pxaip&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Writing Device Drivers

Writing Device Drivers

some drivers have to be done first:
serial port (or another console device)
interrupt controller
crucial machine-dependent bus drivers such as
mainbus(4) or pxaip(4)

BSD has the autoconf(9) framework
basically, there is direct and indirect configuration

http://www.openbsd.org/cgi-bin/man.cgi?query=mainbus&sektion=4&arch=mac68k
http://www.openbsd.org/cgi-bin/man.cgi?query=pxaip&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=autoconf&sektion=9


Porting OpenBSD OpenBSD/zaurus

Writing Device Drivers

Writing Device Drivers

some drivers have to be done first:
serial port (or another console device)
interrupt controller
crucial machine-dependent bus drivers such as
mainbus(4) or pxaip(4)

BSD has the autoconf(9) framework
basically, there is direct and indirect configuration
direct configuration is used where enumeration is possible
(PCI, PCMCIA, ...) - drivers can easily be matched with
hardware by device class, vendor ID and prduct ID

http://www.openbsd.org/cgi-bin/man.cgi?query=mainbus&sektion=4&arch=mac68k
http://www.openbsd.org/cgi-bin/man.cgi?query=pxaip&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=autoconf&sektion=9


Porting OpenBSD OpenBSD/zaurus

Writing Device Drivers

Writing Device Drivers

some drivers have to be done first:
serial port (or another console device)
interrupt controller
crucial machine-dependent bus drivers such as
mainbus(4) or pxaip(4)

BSD has the autoconf(9) framework
basically, there is direct and indirect configuration
direct configuration is used where enumeration is possible
(PCI, PCMCIA, ...) - drivers can easily be matched with
hardware by device class, vendor ID and prduct ID
indirect configuration is used where busses have to way to
see what devices are attached and how (ISA, I2C, ...) -
drivers have to probe for the hardware

http://www.openbsd.org/cgi-bin/man.cgi?query=mainbus&sektion=4&arch=mac68k
http://www.openbsd.org/cgi-bin/man.cgi?query=pxaip&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=autoconf&sektion=9


Porting OpenBSD OpenBSD/zaurus

Writing Device Drivers

Writing Device Drivers

some drivers have to be done first:
serial port (or another console device)
interrupt controller
crucial machine-dependent bus drivers such as
mainbus(4) or pxaip(4)

BSD has the autoconf(9) framework
basically, there is direct and indirect configuration
direct configuration is used where enumeration is possible
(PCI, PCMCIA, ...) - drivers can easily be matched with
hardware by device class, vendor ID and prduct ID
indirect configuration is used where busses have to way to
see what devices are attached and how (ISA, I2C, ...) -
drivers have to probe for the hardware

layered drivers and attachment drivers
apm(4), lcd(4), ohci(4), pcmcia(4), more?
because of some obscure chips (scoop(4), backlight
control, ...)

http://www.openbsd.org/cgi-bin/man.cgi?query=mainbus&sektion=4&arch=mac68k
http://www.openbsd.org/cgi-bin/man.cgi?query=pxaip&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=autoconf&sektion=9
http://www.openbsd.org/cgi-bin/man.cgi?query=apm&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=lcd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=ohci&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pcmcia&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Writing Device Drivers

Writing Device Drivers

some drivers have to be done first:
serial port (or another console device)
interrupt controller
crucial machine-dependent bus drivers such as
mainbus(4) or pxaip(4)

BSD has the autoconf(9) framework
basically, there is direct and indirect configuration
direct configuration is used where enumeration is possible
(PCI, PCMCIA, ...) - drivers can easily be matched with
hardware by device class, vendor ID and prduct ID
indirect configuration is used where busses have to way to
see what devices are attached and how (ISA, I2C, ...) -
drivers have to probe for the hardware

layered drivers and attachment drivers
apm(4), lcd(4), ohci(4), pcmcia(4), more?
because of some obscure chips (scoop(4), backlight
control, ...)

you can use drivers from other BSDs

http://www.openbsd.org/cgi-bin/man.cgi?query=mainbus&sektion=4&arch=mac68k
http://www.openbsd.org/cgi-bin/man.cgi?query=pxaip&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=autoconf&sektion=9
http://www.openbsd.org/cgi-bin/man.cgi?query=apm&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=lcd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=ohci&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pcmcia&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Going Native

Going Native

you can mount an NFS root until the disk driver works
(“make cross-distrib” can build a minimal distribution)



Porting OpenBSD OpenBSD/zaurus

Going Native

Going Native

you can mount an NFS root until the disk driver works
(“make cross-distrib” can build a minimal distribution)
you have to cheat, but it’s done only once:

use the natively-built distribution from another port with the
same CPU architecture (cats for zaurus)
worst case: cross-compile the native compiler



Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs



Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs
port boot(8)

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs
port boot(8)
document the boot process (boot_zaurus(8), ...)

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_zaurus&sektion=8&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs
port boot(8)
document the boot process (boot_zaurus(8), ...)
document already supported devices (intro(4), ...)

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_zaurus&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs
port boot(8)
document the boot process (boot_zaurus(8), ...)
document already supported devices (intro(4), ...)
build snapshots, announce the port and make it available

update web pages
set up a mailing list
make other people do these things :)

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_zaurus&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs
port boot(8)
document the boot process (boot_zaurus(8), ...)
document already supported devices (intro(4), ...)
build snapshots, announce the port and make it available

update web pages
set up a mailing list
make other people do these things :)

write and document new device drivers

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_zaurus&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs
port boot(8)
document the boot process (boot_zaurus(8), ...)
document already supported devices (intro(4), ...)
build snapshots, announce the port and make it available

update web pages
set up a mailing list
make other people do these things :)

write and document new device drivers
fix more bugs

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_zaurus&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Subsequent Work

Subsequent Work

fix most annoying bugs
port boot(8)
document the boot process (boot_zaurus(8), ...)
document already supported devices (intro(4), ...)
build snapshots, announce the port and make it available

update web pages
set up a mailing list
make other people do these things :)

write and document new device drivers
fix more bugs
make the ports tree aware of the new platform, eg create
plists

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=boot_zaurus&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=intro&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Outline

1 Porting OpenBSD
What It Takes
Preparation
Cross-Development
The Boot Loader
Building The Kernel
Adapting Startup Code
Writing Device Drivers
Going Native
Subsequent Work

2 OpenBSD/zaurus
History
What It Took
What Was Done
Tricky Parts
Current Status
Future Plans



Porting OpenBSD OpenBSD/zaurus

History

History

“cats” and “zaurus” are “multi-arch” ports
NetBSD/cats ported to OpenBSD by Dale Rahn (drahn@)
to support ARM processors
Dale started in December 2004 based on OpenBSD/cats
(but worked on some stuff before, like lcd(4))
kind-of usable for Theo in January 2005
first release was 3.7 (released in May 2005)

only a few things missing, like audio support

work is ongoing

http://www.openbsd.org/cgi-bin/man.cgi?query=lcd&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004



Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004
more than 10 developers who contributed Zaurus-specific
code in different areas (some of them didn’t even have
one)

eg pascoe@ worked on zaudio(4)ithout even having a
zaurus, all remotely

http://www.openbsd.org/cgi-bin/man.cgi?query=zaudio&sektion=4&arch=w


Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004
more than 10 developers who contributed Zaurus-specific
code in different areas (some of them didn’t even have
one)

eg pascoe@ worked on zaudio(4)ithout even having a
zaurus, all remotely

good documentation

http://www.openbsd.org/cgi-bin/man.cgi?query=zaudio&sektion=4&arch=w


Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004
more than 10 developers who contributed Zaurus-specific
code in different areas (some of them didn’t even have
one)

eg pascoe@ worked on zaudio(4)ithout even having a
zaurus, all remotely

good documentation
processor documentation was was extremely useful, even
for writing device drivers - it is a System-on-Chip design

http://www.openbsd.org/cgi-bin/man.cgi?query=zaudio&sektion=4&arch=w


Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004
more than 10 developers who contributed Zaurus-specific
code in different areas (some of them didn’t even have
one)

eg pascoe@ worked on zaudio(4)ithout even having a
zaurus, all remotely

good documentation
processor documentation was was extremely useful, even
for writing device drivers - it is a System-on-Chip design
touch-screen controller, audio controller and the microdrive
were also documented

http://www.openbsd.org/cgi-bin/man.cgi?query=zaudio&sektion=4&arch=w


Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004
more than 10 developers who contributed Zaurus-specific
code in different areas (some of them didn’t even have
one)

eg pascoe@ worked on zaudio(4)ithout even having a
zaurus, all remotely

good documentation
processor documentation was was extremely useful, even
for writing device drivers - it is a System-on-Chip design
touch-screen controller, audio controller and the microdrive
were also documented
but some Sharp-made chips are not, and depending on
Linux source code as documentation is horrifying

http://www.openbsd.org/cgi-bin/man.cgi?query=zaudio&sektion=4&arch=w


Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004
more than 10 developers who contributed Zaurus-specific
code in different areas (some of them didn’t even have
one)

eg pascoe@ worked on zaudio(4)ithout even having a
zaurus, all remotely

good documentation
processor documentation was was extremely useful, even
for writing device drivers - it is a System-on-Chip design
touch-screen controller, audio controller and the microdrive
were also documented
but some Sharp-made chips are not, and depending on
Linux source code as documentation is horrifying

money for machines for developers

http://www.openbsd.org/cgi-bin/man.cgi?query=zaudio&sektion=4&arch=w


Porting OpenBSD OpenBSD/zaurus

What It Took

What It Took

ball really started rollng at OpenCON 2004
more than 10 developers who contributed Zaurus-specific
code in different areas (some of them didn’t even have
one)

eg pascoe@ worked on zaudio(4)ithout even having a
zaurus, all remotely

good documentation
processor documentation was was extremely useful, even
for writing device drivers - it is a System-on-Chip design
touch-screen controller, audio controller and the microdrive
were also documented
but some Sharp-made chips are not, and depending on
Linux source code as documentation is horrifying

money for machines for developers
an unknown amount of beer :) to start things

http://www.openbsd.org/cgi-bin/man.cgi?query=zaudio&sektion=4&arch=w


Porting OpenBSD OpenBSD/zaurus

What Was Done

What Was Done

processor startup code adapted for the Zaurus
(arm/arm/locore.S is shared between different
machines)



Porting OpenBSD OpenBSD/zaurus

What Was Done

What Was Done

processor startup code adapted for the Zaurus
(arm/arm/locore.S is shared between different
machines)
boot(8) ported to Linux

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

What Was Done

What Was Done

processor startup code adapted for the Zaurus
(arm/arm/locore.S is shared between different
machines)
boot(8) ported to Linux
hacked up com(4) driver for PXA27x

integrated pcic(4) driver for PXA27x from NetBSD
integrated lcd(4) for PXA27x

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=com&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pcic&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=lcd&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

What Was Done

What Was Done

processor startup code adapted for the Zaurus
(arm/arm/locore.S is shared between different
machines)
boot(8) ported to Linux
hacked up com(4) driver for PXA27x

integrated pcic(4) driver for PXA27x from NetBSD
integrated lcd(4) for PXA27x

fake apm(4) backend to use the existing framework

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=com&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pcic&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=lcd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=apm&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

What Was Done

What Was Done

processor startup code adapted for the Zaurus
(arm/arm/locore.S is shared between different
machines)
boot(8) ported to Linux
hacked up com(4) driver for PXA27x

integrated pcic(4) driver for PXA27x from NetBSD
integrated lcd(4) for PXA27x

fake apm(4) backend to use the existing framework
and many little things. . .

http://www.openbsd.org/cgi-bin/man.cgi?query=boot&sektion=8&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=com&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pcic&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=lcd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=apm&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward



Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward
nlist() on non-native objects - a cross-development
(non-)issue in elfrdsetroot



Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward
nlist() on non-native objects - a cross-development
(non-)issue in elfrdsetroot
undocumented chips and circuitry (scoop(4), backlight
controller, power circuit)

http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4


Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward
nlist() on non-native objects - a cross-development
(non-)issue in elfrdsetroot
undocumented chips and circuitry (scoop(4), backlight
controller, power circuit)
we couldn’t support C860 machines

no disk drive; just raw flash
too many differences between models
more developers have the C3x00

http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4


Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward
nlist() on non-native objects - a cross-development
(non-)issue in elfrdsetroot
undocumented chips and circuitry (scoop(4), backlight
controller, power circuit)
we couldn’t support C860 machines

no disk drive; just raw flash
too many differences between models
more developers have the C3x00

zkbd(4) is just a bunch of GPIO inputs

http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4


Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward
nlist() on non-native objects - a cross-development
(non-)issue in elfrdsetroot
undocumented chips and circuitry (scoop(4), backlight
controller, power circuit)
we couldn’t support C860 machines

no disk drive; just raw flash
too many differences between models
more developers have the C3x00

zkbd(4) is just a bunch of GPIO inputs
UART was not completely compatible to a standard
16550A or 16750

http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4


Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward
nlist() on non-native objects - a cross-development
(non-)issue in elfrdsetroot
undocumented chips and circuitry (scoop(4), backlight
controller, power circuit)
we couldn’t support C860 machines

no disk drive; just raw flash
too many differences between models
more developers have the C3x00

zkbd(4) is just a bunch of GPIO inputs
UART was not completely compatible to a standard
16550A or 16750
screen rotation on framebuffer console - not in 3.7

http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4


Porting OpenBSD OpenBSD/zaurus

Tricky Parts

Tricky Parts

in general, porting went on fairly quickly and
straightforward
nlist() on non-native objects - a cross-development
(non-)issue in elfrdsetroot
undocumented chips and circuitry (scoop(4), backlight
controller, power circuit)
we couldn’t support C860 machines

no disk drive; just raw flash
too many differences between models
more developers have the C3x00

zkbd(4) is just a bunch of GPIO inputs
UART was not completely compatible to a standard
16550A or 16750
screen rotation on framebuffer console - not in 3.7
no hardware floating-point unit - creates performance
problems with some software (e.g. xmms, mplayer; on
zaurus we use integer math decoders for these kinds
programs where possible)

http://www.openbsd.org/cgi-bin/man.cgi?query=scoop&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4


Porting OpenBSD OpenBSD/zaurus

Current Status

Current Status

mostly feature-complete



Porting OpenBSD OpenBSD/zaurus

Current Status

Current Status

mostly feature-complete
we support wired and infrared serial ports



Porting OpenBSD OpenBSD/zaurus

Current Status

Current Status

mostly feature-complete
we support wired and infrared serial ports
all existing USB and PCMCIA cards should just work



Porting OpenBSD OpenBSD/zaurus

Current Status

Current Status

mostly feature-complete
we support wired and infrared serial ports
all existing USB and PCMCIA cards should just work
LCD works in portrait and landscape mode (under X)

but you have to restart X
on-the-fly rotation is hard - no API in X to do that



Porting OpenBSD OpenBSD/zaurus

Current Status

Current Status

mostly feature-complete
we support wired and infrared serial ports
all existing USB and PCMCIA cards should just work
LCD works in portrait and landscape mode (under X)

but you have to restart X
on-the-fly rotation is hard - no API in X to do that

audio playback works well, with occasional glitches



Porting OpenBSD OpenBSD/zaurus

Current Status

Current Status

mostly feature-complete
we support wired and infrared serial ports
all existing USB and PCMCIA cards should just work
LCD works in portrait and landscape mode (under X)

but you have to restart X
on-the-fly rotation is hard - no API in X to do that

audio playback works well, with occasional glitches
even Java works



Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans

of course, continue to fix and improve stuff
better keyboard support (zkbd(4))
“xdm=YES” should work out of the box
PCMCIA bugfixes (some detection problems, voltage
switching)
anything else?

http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans

of course, continue to fix and improve stuff
better keyboard support (zkbd(4))
“xdm=YES” should work out of the box
PCMCIA bugfixes (some detection problems, voltage
switching)
anything else?

add “sysctl hw.cpuspeed” support for running at 91 Mhz,
208 Mhz or 416 Mhz

http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans

of course, continue to fix and improve stuff
better keyboard support (zkbd(4))
“xdm=YES” should work out of the box
PCMCIA bugfixes (some detection problems, voltage
switching)
anything else?

add “sysctl hw.cpuspeed” support for running at 91 Mhz,
208 Mhz or 416 Mhz
wsdisplay(4) is improving thanks to miod@

http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=wsdisplay&sektion=4


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans

of course, continue to fix and improve stuff
better keyboard support (zkbd(4))
“xdm=YES” should work out of the box
PCMCIA bugfixes (some detection problems, voltage
switching)
anything else?

add “sysctl hw.cpuspeed” support for running at 91 Mhz,
208 Mhz or 416 Mhz
wsdisplay(4) is improving thanks to miod@
support CF XGA cards (miod@ and matthieu@ are
working on this)

http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=wsdisplay&sektion=4


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans

of course, continue to fix and improve stuff
better keyboard support (zkbd(4))
“xdm=YES” should work out of the box
PCMCIA bugfixes (some detection problems, voltage
switching)
anything else?

add “sysctl hw.cpuspeed” support for running at 91 Mhz,
208 Mhz or 416 Mhz
wsdisplay(4) is improving thanks to miod@
support CF XGA cards (miod@ and matthieu@ are
working on this)
apm(4) improvements

turn off some more chips when suspended
extended power-saving measures, perhaps

http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=wsdisplay&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=apm&sektion=4&arch=zaurus


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans

of course, continue to fix and improve stuff
better keyboard support (zkbd(4))
“xdm=YES” should work out of the box
PCMCIA bugfixes (some detection problems, voltage
switching)
anything else?

add “sysctl hw.cpuspeed” support for running at 91 Mhz,
208 Mhz or 416 Mhz
wsdisplay(4) is improving thanks to miod@
support CF XGA cards (miod@ and matthieu@ are
working on this)
apm(4) improvements

turn off some more chips when suspended
extended power-saving measures, perhaps

gpioctl(8) support (LED, hinge state?)

http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=wsdisplay&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=apm&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=gpioctl&sektion=8


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans

of course, continue to fix and improve stuff
better keyboard support (zkbd(4))
“xdm=YES” should work out of the box
PCMCIA bugfixes (some detection problems, voltage
switching)
anything else?

add “sysctl hw.cpuspeed” support for running at 91 Mhz,
208 Mhz or 416 Mhz
wsdisplay(4) is improving thanks to miod@
support CF XGA cards (miod@ and matthieu@ are
working on this)
apm(4) improvements

turn off some more chips when suspended
extended power-saving measures, perhaps

gpioctl(8) support (LED, hinge state?)
Fix the ARM pmap issue with write-back caching

http://www.openbsd.org/cgi-bin/man.cgi?query=zkbd&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=wsdisplay&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=apm&sektion=4&arch=zaurus
http://www.openbsd.org/cgi-bin/man.cgi?query=gpioctl&sektion=8


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans (cont’d)

audio recording



Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans (cont’d)

audio recording
BlueTooth support via USB dongles - grange@ already
ported ubt(4) from FreeBSD and created
net/bluetooth-tools

http://www.openbsd.org/cgi-bin/man.cgi?query=ubt&sektion=4


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans (cont’d)

audio recording
BlueTooth support via USB dongles - grange@ already
ported ubt(4) from FreeBSD and created
net/bluetooth-tools
support more Zaurus models (C860, probably even
StrongARM-based SL-5500)

http://www.openbsd.org/cgi-bin/man.cgi?query=ubt&sektion=4


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans (cont’d)

audio recording
BlueTooth support via USB dongles - grange@ already
ported ubt(4) from FreeBSD and created
net/bluetooth-tools
support more Zaurus models (C860, probably even
StrongARM-based SL-5500)
SDIO support - new framework

http://www.openbsd.org/cgi-bin/man.cgi?query=ubt&sektion=4


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans (cont’d)

audio recording
BlueTooth support via USB dongles - grange@ already
ported ubt(4) from FreeBSD and created
net/bluetooth-tools
support more Zaurus models (C860, probably even
StrongARM-based SL-5500)
SDIO support - new framework
USB device framework

client-side cdce(4)
storage class device support needs to be thought through.
is it useful after all?

http://www.openbsd.org/cgi-bin/man.cgi?query=ubt&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=cdce&sektion=4


Porting OpenBSD OpenBSD/zaurus

Future Plans

Future Plans (cont’d)

audio recording
BlueTooth support via USB dongles - grange@ already
ported ubt(4) from FreeBSD and created
net/bluetooth-tools
support more Zaurus models (C860, probably even
StrongARM-based SL-5500)
SDIO support - new framework
USB device framework

client-side cdce(4)
storage class device support needs to be thought through.
is it useful after all?

what can you think of?

http://www.openbsd.org/cgi-bin/man.cgi?query=ubt&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=cdce&sektion=4


Porting OpenBSD OpenBSD/zaurus

Last Page

need donations (time, money, bugfixes, beer)
thanks


	Porting OpenBSD
	What It Takes
	Preparation
	Cross-Development
	The Boot Loader
	Building The Kernel
	Adapting Startup Code
	Writing Device Drivers
	Going Native
	Subsequent Work

	OpenBSD/zaurus
	History
	What It Took
	What Was Done
	Tricky Parts
	Current Status
	Future Plans

	

