

When Hardware is WRONG...
Or... They can fix it in software

Jason L. Wright
jason@openbsd.org
NYCBSDCON 2008

mailto:jason@openbsd.org

About Me...
● Not Chewbacca

(he may be related, though)
● Asthetically challenged
● Not from Idaho
● But I live/work there...

Why does hardware go wrong?
● Time to market pressure

● Lack of understanding of performance impact

● Or perhaps, hardware folks hate software folks

Bad Implementation
● Sometimes things go wrong despite good

intentions...
● Bluesteelnet 5501

● Has good quality random number generator
● And a weak output transitor, can't pull line low

sys/dev/pci/ubsec.c

Interrupts
● Interrupt is a signal from hardware that the CPU

needs to do something
● Generated externally by network cards, timers,

etc.
● Forms the basis of UNIX operation

● Process scheduling
● Packet processing

So, why implement interrupts?

The alternative is polling (boo, hiss!)
Faster (ok, yeah, I'll buy that)
At the expense of WASTED TIME!
This will not do for event driven OS's

SafeNet SafeXcel 1141 – no interrupt
implemented for public key crypto completion!

“Well, you can estimate how long it will take and
then poll.” Um, yeah.

sys/dev/pci/safe.c

Edges and Levels
● Two types of interrupts

● Edge (ISA, boo! Hiss!)
● Level (everything else)

● Sharing only possible with level triggered ints
● But, you have to know who is calling!

AMD7930 audio
● No way to know if it interrupted
● So, “maybe” it did!
 foreach interrupt_handler x {
 if (interrupted(x))
 return;
 }
sys/arch/sparc/dev/amd7930.c

Non-Contiguous Buffers
● Form the basis for disk I/O (struct iovec)
● Also basis for network I/O (struct mbuf)

(mbufs are called skbuf's under Linux, if anyone cares)

● Aka scatter-gather I/O

Contiguous Buffers
● Sure, you can make non-contig buffers contig
● Allocate a big buffer, copy
● Do operation
● Copy big buffer BACK into non-contig buffers
● Ah, but there's a wrinkle (or two...)

Dealing with non-contiguousness
● Can't allocate DMA-able memory in an interrupt

context (the DMA map isn't interrupt safe)
● So, either pre-allocate the biggest buffer(s)

you'll ever need (ew!)
● Or, provide a process context (double ew!)
● NetOctave NSP2000 doesn't support scatter-

gather... oops... and performance is horrible
sys/dev/pci/noct.c

Network Devices

Basic structure of a PCI (or whatever) net device
MAC

PHY
RX/TX FIFO PCI/DMA

● PHY is the physical layer interface
to MAC

● MAC is the guts: interface to DMA,
bus, and PHY

When FIFO is too small
● RX/TX checksum offloading

● Cool idea! Let the MAC do the math
● Jumbo grams (MTU ~9000 bytes)

● Cool idea! More bandwidth, less interrupts
● But if your TX FIFO is 8192 bytes...

● You get Nat Semi 83820/83821
sys/dev/pci/if_nge.c

MAC

PHY
RX/TX FIFO PCI/DMA

Bus bugs...

Locking up the bus (SBus) is bad...

MAC
QE

RX/TX FIFO SBUS/DMA

QE

QE

QE

sys/dev/sbus/qe.c

Bus Bandwidth
● Simple equation:

Bit speed * bits = bandwidth

8Mhz⋅16bit=128Mbit / sec
33Mhz⋅32bit≈1.0Gbit / sec

ISA
PCI

● But wait, that's maximum
theoretical BW

100Mbit/sec on a 128Mbit/sec bus

sys/dev/isa/if_ef_isapnp.c
Mmm, pizza...

DMA, or how many bits is enough?
● Suppose you had a 32bit address space

(ie. Modern CPU)
● But, you need to support a 24bit card

(address space is 24bits, that is)

The answer to the question: all of them

Bounce(y) Buffers
● Allocate chunks below the boundary (16MB)
● Copy data from high memory into the chunks
● Do the operation
● Copy it back into high memory
● Return chunk to the pool

● ISA/EISA

Virtual DMA
● Requires extra hardware (and code to use it)
● Cards are given DMA virtual addresses (DVAs)
● Hardware remaps DVA to the real address
● But, there's a limited amount of address space

● SPARC/SPARC64: iommu
sys/arch/sparc{64}/dev/iommu.c

Intel vs. AMD (EM64T vs AMD64)
● AMD has virtual DMA hardware (GART)

● Not enforced usage, like sparc
● Intel, welcome to the 1990s! Bounce buffers

are back in style
● 32bit PCI devices in a 64bit machine

Write after Free...
● Suppose you free'd an address, but the device

wasn't done...
● CMD Tech (pciide.c)

Questions? Comments?

	When hardware is WRONG, or "They can fix it in software"
	About me...
	Why does hardware go wrong?
	Bad Implementation (ubsec)
	Interrupts
	Why implement interrupts? (safe.c)
	Slide 7
	Slide 8
	Non-contiguous buffers
	Contiguous buffers
	Dealing with non-contiguousness
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

